【題目】如圖,四棱錐中,底面為平行四邊形,的中點(diǎn),平面的中點(diǎn),,

1)證明:平面;

2)如果二面角的正切值為2,求的值.

【答案】1)祥見(jiàn)解析;(2a=2.

【解析】

試題(1)由PO⊥平面ABCD,得PO⊥AD,由∠ADC=45°AD=AC,得AD⊥AC,從而證明AD⊥平面PAC.(2)法一,先利用三垂線定理作出二面角M-AC-D的平面角:連結(jié)DO,MG⊥DOG,作GH⊥AOH,因?yàn)?/span>MPD中點(diǎn),且MG⊥DO,所以GDO中點(diǎn),且MG⊥平面ABCD,顯然,∠MHG即為二面角M-AC-D的平面角.然后在直角三角形MHG中,可用a表示出的正切值,從而由已知即可求出a的值;法二,以OAx軸,OPy軸,O為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,利用空間向量知亦可求.

試題解析: (1)證明:由題意,∠ADC=45o,AD=AC =1,∠DAC=90o

DA⊥AC.又因?yàn)?PO⊥平面ABCD,

所以,DA⊥PODA⊥平面PAC 4

2)法一:連結(jié)DO,MG⊥DOG,作GH⊥AOH,因?yàn)?/span>MPD中點(diǎn),且MG⊥DO,所以GDO中點(diǎn),且MG⊥平面ABCD,顯然,∠MHG即為二面角M-AC-D的平面角. 8

因?yàn)?/span>GH⊥AO,且GDO中點(diǎn),所以,而,故,PO="2MG=2." 12

法二:建立如圖所示的空間直角坐標(biāo)系O-xyz,則,,,

設(shè)平面MAC的法向量為,,,則,所以的一個(gè)取值為

10

平面ACD的法向量為.

設(shè)二面角的平面角為

因?yàn)?/span>,所以

a=2 12

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在萬(wàn)眾創(chuàng)新的大經(jīng)濟(jì)背景下,某成都青年面包店推出一款新面包,每個(gè)面包的成本價(jià)為元,售價(jià)為元,該款面包當(dāng)天只出一爐(一爐至少個(gè),至多個(gè)),當(dāng)天如果沒(méi)有售完,剩余的面包以每個(gè)元的價(jià)格處理掉,為了確定這一爐面包的個(gè)數(shù),該店記錄了這款新面包最近天的日需求量(單位:個(gè)),整理得下表:

日需求量

頻數(shù)

(1)根據(jù)表中數(shù)據(jù)可知,頻數(shù)與日需求量(單位:個(gè))線性相關(guān),求關(guān)于的線性回歸方程;

(2)以天記錄的各日需求量的頻率代替各日需求量的概率,若該店這款新面包出爐的個(gè)數(shù)為,記當(dāng)日這款新面包獲得的總利潤(rùn)為(單位:元).求的分布列及其數(shù)學(xué)期望.

相關(guān)公式:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列四個(gè)命題:①直線的斜率,則直線的傾斜角;②直線與以、兩點(diǎn)為端點(diǎn)的線段相交,則;③如果實(shí)數(shù)滿足方程,那么的最大值為;④直線與橢圓恒有公共點(diǎn),則的取值范圍是.其中正確命題的序號(hào)是______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某廠銷售部以箱為單位銷售某種零件,每箱的定價(jià)為200元,低于100箱按原價(jià)銷售;不低于100箱通過(guò)雙方議價(jià),買方能以優(yōu)惠成交的概率為0.6,以優(yōu)惠成交的概率為0.4.

(1)甲、乙兩單位都要在該廠購(gòu)買150箱這種零件,兩單位各自達(dá)成的成交價(jià)相互獨(dú)立,求甲單位優(yōu)惠比例不低于乙單位優(yōu)惠比例的概率;

(2)某單位需要這種零件650箱,求購(gòu)買總價(jià)的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正三棱柱中,AB=3,=4,M的中點(diǎn),PBC邊上的一點(diǎn),且由點(diǎn)P沿棱柱側(cè)面經(jīng)過(guò)棱M點(diǎn)的最短路線長(zhǎng)為,設(shè)這條最短路線與的交點(diǎn)為N,求

1)該三棱柱的側(cè)面展開(kāi)圖的對(duì)角線長(zhǎng).

2PCNC的長(zhǎng)

3)平面NMP與平面ABC所成二面角(銳角)的大。ㄓ梅慈呛瘮(shù)表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)用行列式判斷關(guān)于的二元一次方程組解的情況;

(2)用行列試解關(guān)于的二元一次方程組并對(duì)解的情況進(jìn)行討論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將邊長(zhǎng)分別為的正方形疊放在一起,形成如圖所示的圖形,由小到大,依次記各陰影部分所在的圖形為第1個(gè)、第2個(gè)、……、第個(gè)陰影部分圖形.設(shè)前個(gè)陰影部分圖形的面積的平均值為.記數(shù)列滿足:.

(1)的表達(dá)式及數(shù)列的通項(xiàng)公式;

(2),其中為常數(shù),恒成立,的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,其中一個(gè)焦點(diǎn)F在直線.

1)求橢圓C的方程;

2)若直線和直線與橢圓分別相交于點(diǎn)、、、,求的值;

3)若直線與橢圓交于P,Q兩點(diǎn),試求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=aln x (aR).

(1)當(dāng)a=1時(shí),求f(x)x[1,+∞)內(nèi)的最小值;

(2)f(x)存在單調(diào)遞減區(qū)間,求a的取值范圍;

(3)求證ln(n+1)> (nN*).

查看答案和解析>>

同步練習(xí)冊(cè)答案