若雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的一條漸近線為y=
3
x,則雙曲線的離心率為( 。
A、
3
B、2
C、
5
D、
6
考點:雙曲線的簡單性質(zhì)
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:求出雙曲線的漸近線方程,由題意可得
b
a
=
3
,再由a,b,c的關(guān)系和離心率公式計算即可得到.
解答: 解:雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的漸近線方程為y=±
b
a
x,
由題意可得
b
a
=
3
,
則c=
a2+b2
=
a2+3a2
=2a,
則e=
c
a
=2.
故選B.
點評:本題考查雙曲線的方程和性質(zhì),考查漸近線方程和離心率的求法,考查運算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

集合{x|x≤-1}用區(qū)間形式表示正確的是( 。
A、(-∞,-1]
B、(-∞,-1]
C、[-1,+∞)
D、(-1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個幾何體的三視圖如圖所示(單位:cm),則該幾何體的體積為
 
cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在建立兩個變量y與x的回歸模型中,分別選擇了4個不同模型,模型1-4的R2分別為0.98,0.80,0.50,0.25,則其中擬合得最好的模型是( 。
A、模型1B、模型2
C、模型3D、模型4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若命題p:2n-1(n∈Z)是奇數(shù);q:2n+1(n∈Z)是偶數(shù),則下列說法中正確的是( 。
A、¬p為真B、¬q為假
C、p∨q為真D、p∧q為真

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實數(shù)x,y滿足
y≤2
y≥|x+1|
,若可行域內(nèi)存在點使得x+2y-a=0成立,則a的最大值為( 。
A、-1B、1C、4D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)雙曲線M:
x2
a2
-
y2
b2
=1(a>0,b>0)的半焦距為c,且雙曲線M與圓x2+y2=c2相交于A,B,C,D四點,若以A,B,C,D為頂點的四邊形為正方形,則雙曲線M的離心率等于( 。
A、2+
2
B、
2+
2
C、
2
+1
D、
2
+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在復(fù)平面內(nèi),復(fù)數(shù)z1和z2對應(yīng)的點分別是A和B,則
z2
z1
等于( 。
A、1+2iB、2+i
C、-1-2iD、-2+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a,b∈R且a≠2,定義在區(qū)間(-b,b)上的函數(shù)f(x)=lg
1+ax
1+2x
滿足:f(x)+f(-x)=0.
(1)求實數(shù)a的值;
(2)求b的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案