分析 (1)先利用AC⊥BC,求出,再利用圾處理廠對城A的影響度與所選地點到城A的距離的平方成反比,比例系數(shù)為4;對城B的影響度與所選地點到城B的距離的平方成反比,比例系數(shù)為k,得到y(tǒng)和x之間的函數(shù)關(guān)系,最后利用垃圾處理廠建在的中點時,對城A和城B的總影響度為0.065求出k即可求出結(jié)果.
(2)利用基本不等式,找到函數(shù)的最小值即可.
解答 解:(1)由題意知AC⊥BC,BC2=400-x2,y=$\frac{4}{{x}^{2}}$+$\frac{k}{400-{x}^{2}}$(0<x<20)
當(dāng)x=10$\sqrt{2}$時,y=0.065,所以k=9
所以y表示成x的函數(shù)為y=$\frac{4}{{x}^{2}}$+$\frac{9}{400-{x}^{2}}$(0<x<20);
(2)y=$\frac{4}{{x}^{2}}$+$\frac{9}{400-{x}^{2}}$=$\frac{1}{400}$(x2+400-x2)($\frac{4}{{x}^{2}}$+$\frac{9}{400-{x}^{2}}$)
=$\frac{1}{400}$[4+9+$\frac{4(400-{x}^{2})}{{x}^{2}}$+$\frac{9{x}^{2}}{400-{x}^{2}}$]≥$\frac{1}{400}$(13+12)=$\frac{1}{16}$,
當(dāng)且僅當(dāng)$\frac{4(400-{x}^{2})}{{x}^{2}}$=$\frac{9{x}^{2}}{400-{x}^{2}}$,即x=4$\sqrt{10}$時,y的最小值為$\frac{1}{16}$
以當(dāng)x=4$\sqrt{10}$時,即當(dāng)C點到城A的距離為4$\sqrt{10}$時,函數(shù)y=$\frac{4}{{x}^{2}}$+$\frac{k}{400-{x}^{2}}$(0<x<20)有最小值.
點評 本題主要考查函數(shù)在實際生活中的應(yīng)用問題,涉及到函數(shù)解析式的求法以及基本不等式研究函數(shù)的最值問題,屬于中檔題目.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 12 | B. | 10 | C. | 8 | D. | 不是定值 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{19}{41}$ | B. | $\frac{9}{7}$ | C. | $\frac{3}{7}$ | D. | $\frac{40}{59}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {1,2,3,4} | B. | {1,2} | C. | {2,3} | D. | {2,4} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com