分析 (1)化簡g(x)=f(x)+$\frac{1}{x}$-alnx=x+$\frac{1}{x}$,從而按定義法的五步驟證明即可;
(2)當(dāng)a=1時(shí),函數(shù)f(x)=x+1nx,求導(dǎo)f′(x)=1+$\frac{1}{x}$>0;從而可得f(e)≤f(x)≤f(e2),從而解得;
(3)令F(x)=f(x)-3e-1=x+a1nx-3e-1,求導(dǎo)F′(x)=1+$\frac{a}{x}$>0;從而可得F(e)•F(e2)≤0,從而解得.
解答 解:(1)證明:g(x)=f(x)+$\frac{1}{x}$-alnx=x+$\frac{1}{x}$,
任取x1,x2∈(0,1),且x1<x2;
則f(x1)-f(x2)=x1+$\frac{1}{{x}_{1}}$-(x2+$\frac{1}{{x}_{2}}$)
=(x1-x2)(1-$\frac{1}{{x}_{1}{x}_{2}}$)
∵0<x1<x2<1,
∴x1-x2<0,1-$\frac{1}{{x}_{1}{x}_{2}}$<0;
故f(x1)-f(x2)>0,
故函數(shù)g(x)=f(x)+$\frac{1}{x}$-alnx在區(qū)間(0,1)上單凋遞減;
(2)當(dāng)a=1時(shí),函數(shù)f(x)=x+1nx,f′(x)=1+$\frac{1}{x}$>0;
故f(x)在[e,e2]上是增函數(shù);
故f(e)≤f(x)≤f(e2),
即e+1≤f(x)≤2+e2,
故f(x)在[e,e2]上的值域?yàn)閇1+e,2+e2];
(3)令F(x)=f(x)-3e-1=x+a1nx-3e-1,
∵F′(x)=1+$\frac{a}{x}$>0;
故F(x)在區(qū)間[e,e2]上單調(diào)遞增,且F(x)在區(qū)間[e,e2]上連續(xù);
故F(e)•F(e2)≤0,
即(a-2e-1)(2a+e2-3e-1)≤0,
解得,$\frac{3e+1-{e}^{2}}{2}$≤a≤2e+1,
故$\frac{3e+1-{e}^{2}}{2}$≤a<4.
點(diǎn)評(píng) 本題考查了導(dǎo)數(shù)在判斷函數(shù)的單調(diào)性時(shí)的應(yīng)用及函數(shù)的零點(diǎn)的判定定理的應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a>b>c | B. | c>a>b | C. | b>a>c | D. | b>c>a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com