11.在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且2c-2acosB=b.
(1)求角A的大。
(2)若△ABC的面積為$\frac{\sqrt{3}}{4}$,且c2+abcosC+a2=4,求a.

分析 (1)直接利用正弦定理,三句話內(nèi)角和定理,兩角和的正弦函數(shù)公式化簡(jiǎn)已知條件,結(jié)合sinB≠0,然后求角A的余弦函數(shù)值,即可求解;
(2)利用△ABC的面積求出bc,利用余弦定理以及c2+abcosC+a2=4,求出b2+c2=8-3a2,然后通過(guò)余弦定理求a.

解答 解:(1)在△ABC中,∵2c-2acosB=b,
∴由正弦定理可得:2sinC-2sinAcosB=sinB,即:2sin(A+B)-2sinAcosB=sinB,
∴2sinAcosB+2cosAsinB-2sinAcosB=sinB,可得:2cosAsinB=sinB,
∵B為三角形內(nèi)角,sinB≠0,
∴cosA=$\frac{1}{2}$,
又∵A∈(0,π),
∴A=$\frac{π}{3}$.
(2)∵A=$\frac{π}{3}$,且△ABC的面積為$\frac{\sqrt{3}}{4}$=$\frac{1}{2}$bcsinA=$\frac{\sqrt{3}}{4}$bc,
∴解得:bc=1,
∵c2+abcosC+a2=4,cosC=$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$,
∴c2+ab×$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$+a2=4,整理可得:b2+c2=8-3a2,
∴a2=b2+c2-2bccosA=b2+c2-bc=8-3a2-1,整理可得:a=$\frac{\sqrt{7}}{2}$.

點(diǎn)評(píng) 本題考查正弦定理,余弦定理的應(yīng)用,三角形的面積公式的應(yīng)用,考查了轉(zhuǎn)化思想,分析問(wèn)題解決問(wèn)題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.如圖所示,正方體ABCD-A1B1C1D1的棱長(zhǎng)為4,P為BC的中點(diǎn),Q為線段CC1上的動(dòng)點(diǎn),過(guò)點(diǎn)A、P、Q的平面截正方體所得的截面即為S.
①當(dāng)CQ=2時(shí),被S截得的較小幾何體為棱臺(tái);
②當(dāng)3<CQ<4時(shí),S為五邊形;
③當(dāng)CQ=3時(shí),S與C1D1的交點(diǎn)R滿(mǎn)足D1R=1;
④當(dāng)CQ=4時(shí),S截正方體兩部分的體積之比為1:1.
則以上命題正確的是①②④  (寫(xiě)出所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.定義在R上的函數(shù)f(x)滿(mǎn)足f(x+2)=f(x)-2,當(dāng)x∈(0,2]時(shí),f(x)=$\left\{\begin{array}{l}{{x}^{2}-x-6,x∈(0,1]}\\{-{2}^{x-1}-5,x∈(1,2]}\end{array}\right.$,若x∈(-6,-4]時(shí),關(guān)于x的方程af(x)-a2+2=0(a>0)有解,則實(shí)數(shù)a的取值范圍是0<a≤1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.設(shè)橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),過(guò)點(diǎn)Q($\sqrt{2}$,1),右焦點(diǎn)F($\sqrt{2}$,0),
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線l:y=k(x-1)分別交x軸,y軸于C,D兩點(diǎn),且與橢圓C交于M,N兩點(diǎn),若$\overrightarrow{CN}=\overrightarrow{MD}$,求k值;
(Ⅲ)自橢圓C上異于其頂點(diǎn)的任意一點(diǎn)P,作圓O:x2+y2=2的兩條切線切點(diǎn)分別為P1,P2,若直線P1P2在x軸,y軸上的截距分別為m,n,證明:$\frac{1}{m^2}+\frac{2}{n^2}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.某程序框圖如圖所示,其中t∈Z,該程序運(yùn)行后輸出的k=4,則t的最大值為( 。
A.10B.11C.12D.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.命題p:?x<0,x2<2x,則命題¬p為(  )
A.?x0<0,x02<2${\;}^{{x}_{0}}$B.?x0≥0,x02≥2${\;}^{{x}_{0}}$
C.?x0<0,x02≥2${\;}^{{x}_{0}}$D.?x0≥0,x02<2${\;}^{{x}_{0}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知F1(-$\sqrt{3}$,0),F(xiàn)2($\sqrt{3}$,0),點(diǎn)M是圓x2+y2=4上的動(dòng)點(diǎn),動(dòng)點(diǎn)G滿(mǎn)足$\overrightarrow{{F}_{2}M}$=$\overrightarrow{MG}$,過(guò)點(diǎn)M作直線l⊥F2G并交直線F1G于點(diǎn)N.
(1)求點(diǎn)N的軌跡方程E;
(2)設(shè)P是(1)中軌跡E上第一象限內(nèi)的點(diǎn),點(diǎn)P關(guān)于原點(diǎn)O的對(duì)稱(chēng)點(diǎn)為A,關(guān)于x軸的對(duì)稱(chēng)點(diǎn)為Q,線段PQ與x軸相交于點(diǎn)C,點(diǎn)D為CQ的中點(diǎn),若直線AD與橢圓E的另一個(gè)交點(diǎn)為B,試判斷直線PA,PB是否相互垂直?并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.定義在R上的函數(shù)f(x)滿(mǎn)足f(2+x)=f(-x),且在[1,+∞)上為減函數(shù),若f(1-m)<f(m),則實(shí)數(shù)m的取值范圍是( 。
A.($\frac{1}{2}$,+∞)B.(-∞,$\frac{1}{2}$)C.(-∞,-$\frac{1}{2}$)D.(-∞,-$\frac{1}{2}$)∪($\frac{1}{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知曲線C的方程為$\frac{x^2}{a}$+$\frac{y^2}$=1,則“a>b”是“曲線C為焦點(diǎn)在x軸上的橢圓”的(  )
A.充分必要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案