【題目】在學(xué)習(xí)函數(shù)時,我們經(jīng)歷了“確定函數(shù)的表達(dá)式利用函數(shù)圖象研究其性質(zhì)——運用函數(shù)解決問題“的學(xué)習(xí)過程,在畫函數(shù)圖象時,我們通過列表、描點、連線的方法畫出了所學(xué)的函數(shù)圖象.同時,我們也學(xué)習(xí)過絕對值的意義

結(jié)合上面經(jīng)歷的學(xué)習(xí)過程,現(xiàn)在來解決下面的問題:

在函數(shù)中,當(dāng)時,;當(dāng)時,

1)求這個函數(shù)的表達(dá)式;

2)在給出的平面直角坐標(biāo)系中,請直接畫出此函數(shù)的圖象并寫出這個函數(shù)的兩條性質(zhì);

3)在圖中作出函數(shù)的圖象,結(jié)合你所畫的函數(shù)圖象,直接寫出不等式的解集.

【答案】1;(2)圖象、性質(zhì)見解析;(3

【解析】

1)將點的坐標(biāo)代入函數(shù)的解析式,求出的值,由此可得出該函數(shù)的解析式;

2)由題意根據(jù)(1)中的表達(dá)式可以畫出該函數(shù)的圖象,結(jié)合圖象可得出該函數(shù)的對稱性與單調(diào)性;

3)由題意根據(jù)圖象可以直接寫出所求不等式的解集.

1)將點的坐標(biāo)代入函數(shù)的解析式,得,解得,

所以,函數(shù)的解析式為

2)圖象如下:

函數(shù)的圖象關(guān)于直線對稱,該函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為,最小值為;

3)圖象如下,

觀察圖象可得不等式的解集為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{an}滿足當(dāng)n1時,an,且a1.

(1)求證:數(shù)列為等差數(shù)列;

(2)a1a2是否是數(shù)列{an}中的項?如果是,求出是第幾項;如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合,若對于任意實數(shù)對,存在,使成立,則稱集合垂直對點集;下列四個集合中,是垂直對點集的是(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)開發(fā)生產(chǎn)了一種大型電子產(chǎn)品,生產(chǎn)這種產(chǎn)品的年固定成本為2500萬元,每生產(chǎn)百件,需另投入成本(單位:萬元),當(dāng)年產(chǎn)量不足30百件時,;當(dāng)年產(chǎn)量不小于30百件時,;若每件電子產(chǎn)品的售價為5萬元,通過市場分析,該企業(yè)生產(chǎn)的電子產(chǎn)品能全部銷售完.

1)求年利潤(萬元)關(guān)于年產(chǎn)量(百件)的函數(shù)關(guān)系式;

2)年產(chǎn)量為多少百件時,該企業(yè)在這一電子產(chǎn)品的生產(chǎn)中獲利最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)有兩個不相等的正零點,求的取值范圍;

(2)若函數(shù)上的最小值為-3,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,且a2=2b.

(1)求橢圓的方程;

(2)直線l:x﹣y+m=0與橢圓交于A,B兩點,是否存在實數(shù)m,使線段AB的中點在圓x2+y2=5上,若存在,求出m的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方體中, ,平面經(jīng)過,直線則平面截該正方體所得截面的面積為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】箱子里有16張撲克牌:紅桃、、4,黑桃、8、7、4、3、2,草花、、6、5、4,方塊、5,老師從這16張牌中挑出一張牌來,并把這張牌的點數(shù)告訴了學(xué)生甲,把這張牌的花色告訴了學(xué)生乙,這時,老師問學(xué)生甲和學(xué)生乙:你們能從已知的點數(shù)或花色中推知這張牌是什么牌嗎?于是,老師聽到了如下的對話:學(xué)生甲:我不知道這張牌;學(xué)生乙:我知道你不知道這張牌;學(xué)生甲:現(xiàn)在我知道這張牌了;學(xué)生乙:我也知道了.則這張牌是( )

A. 草花5B. 紅桃

C. 紅桃4D. 方塊5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),直線的參數(shù)方程為為參數(shù)).

(1)求的直角坐標(biāo)方程;

(2)若曲線截直線所得線段的中點坐標(biāo)為,求的斜率.

查看答案和解析>>

同步練習(xí)冊答案