4.ABCDEF是邊長為4的正六邊形,PA⊥面ABCDEF,PA=2,則P到BC的距離為4,P到CD的距離為2$\sqrt{13}$.

分析 求出A到BC的距離,可得P到BC的距離;由已知中P是邊長為a的正六邊形ABCDEF所成平面外一點(diǎn),PA⊥AB,PA⊥AF,PA=a.我們易得PA⊥平面ABCDEF,解直角三角形PAC,PAD后,可由勾股定理判斷出PC⊥CD,即可得到答案.

解答 解:由題意,A到BC的距離為2$\sqrt{3}$,PA=2,∴P到BC的距離為$\sqrt{12+4}$=4.
連接AC,AD,PD,如下圖所示:

∵正六邊形ABCDEF的邊長為4,則AC=4$\sqrt{3}$,AD=8,CD=4
又∵PA⊥AB,PA⊥AF,
∴PA⊥平面ABCDEF,
∴PA⊥AC,PA⊥AD
∵PA=2,∴PC=2$\sqrt{13}$,PD=2$\sqrt{17}$,
在△PCD中,∵PC2+CD2=PD2
故PC⊥CD
故PC長即為P點(diǎn)到CD的距離=2$\sqrt{13}$
故答案為:4,2$\sqrt{13}$.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是空間點(diǎn)到線之間的距離,其中證明PC⊥CD,進(jìn)而將點(diǎn)到直線的距離,轉(zhuǎn)化為求線段長問題,是解答本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.不論a取何值,函數(shù)y=loga(x+3)-1恒過定點(diǎn)A.
(1)求點(diǎn)A的坐標(biāo);
(2)若點(diǎn)A在直線mx+ny+1=0上,其中m>0,n>0,求$\frac{1}{m}$+$\frac{2}{n}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,直線ρsin(θ+$\frac{π}{4}$)=2被曲線ρ=4截得的弦長為2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知下列點(diǎn)的直角坐標(biāo),求它們的極坐標(biāo):
(1)D(0,-2);(2)E(-3,-3);(3)E(-5,-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=|x-2a|+|x-a|,a∈R,a≠0.
(Ⅰ)當(dāng)a=1時(shí),解不等式f(x)>3;
(Ⅱ)若b∈R,且b≠0,證明:f(b)≥f(a),并說明等號(hào)成立的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.長方體ABCD-A1B1C1D1中,AB=2AD=2AA1=2,P為A1B1中點(diǎn).
(Ⅰ)求證:CP⊥平面AD1P;
(Ⅱ)求點(diǎn)P到平面ACD1的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.一個(gè)正方體的平面展開圖及該正方體的直觀圖的示意圖如圖所示.
(1)判斷正方體中平面BEG與平面ACH的位置關(guān)系.并證明你的結(jié)論;
(2)若P是 CG的中點(diǎn),求正方體中DP與HF所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,在正三棱柱ABC-A1B1C1中,AB=BB1=4.
(1)求直線AB1與A1C1所成角;
(2)求點(diǎn)B到平面AB1C的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知點(diǎn)P是二面角α-AB-β兩個(gè)半平面外一點(diǎn),且滿足PC⊥α,PD⊥β,C、D是垂足.
(Ⅰ)試判斷直線AB線與直線CD的位置關(guān)系.并證明你的結(jié)論;
(Ⅱ)若二面角α-AB-β的大小為θ(0<θ<π),求∠CPD的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案