16.一個(gè)正方體的平面展開圖及該正方體的直觀圖的示意圖如圖所示.
(1)判斷正方體中平面BEG與平面ACH的位置關(guān)系.并證明你的結(jié)論;
(2)若P是 CG的中點(diǎn),求正方體中DP與HF所成角的余弦值.

分析 (1)由正方體的平面展開圖及該正方體的直觀圖的示意圖得到正方體為正方體ABCD-EFGH,由AC∥EG,AH∥BG,得到平面BEG∥平面ACH;
(2)由HF∥BD,得∠PDB是正方體中DP與HF所成角(或所成角的補(bǔ)角),由此利用余弦定理能求出正方體中DP與HF所成角的余弦值.

解答 解:(1)平面BEG∥平面ACH.
證明如下:
由正方體的平面展開圖及該正方體的直觀圖的示意圖得到正方體為正方體ABCD-EFGH,
∵AC∥EG,AH∥BG,AC∩AH=A,EG∩BG=G,
AC、AH?平面ACH,EG、BG?平面BEG,
∴平面BEG∥平面ACH.
(2)∵HF∥BD,∴∠PDB是正方體中DP與HF所成角(或所成角的補(bǔ)角),
連結(jié)PB,設(shè)正方形的棱長為2,
則BD=2$\sqrt{2}$,PB=PD=$\sqrt{4+1}$=$\sqrt{5}$,
∴cos∠PDB=$\frac{D{P}^{2}+B{D}^{2}-P{B}^{2}}{2DP•DB}$=$\frac{5+8-5}{2•\sqrt{5}•\sqrt{8}}$=$\frac{\sqrt{10}}{5}$.
∴正方體中DP與HF所成角的余弦值為$\frac{\sqrt{10}}{5}$.

點(diǎn)評 本題考查面面位置關(guān)系的判斷,考查正方體中異面直線所成角的余弦值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意余弦定理的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,直三棱柱ABC-A1B1C1的底邊是邊長為2的正三角形.
(Ⅰ)如果AB1⊥BC1,求三棱柱的高;
(Ⅱ)在(Ⅰ)的條件下,求二面角A1-AB1-C1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在底面為正方形的四棱錐S-ABCD中,AD⊥平面ABCD,E、F是AS、BC的中點(diǎn),
(Ⅰ)求證:BE∥平面SDF;
(Ⅱ)若AB=5,求點(diǎn)E到平面SDF的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.ABCDEF是邊長為4的正六邊形,PA⊥面ABCDEF,PA=2,則P到BC的距離為4,P到CD的距離為2$\sqrt{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=1+3t}\\{y=2-4t}\end{array}}\right.$(t為參數(shù)),則直線l傾斜角的余弦值為(  )
A.-$\frac{4}{5}$B.-$\frac{3}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知直線x+y=1與圓(x-a)2+(y-b)2=2(a>0,b>0)相切,則ab的取值范圍是( 。
A.(0,$\frac{3}{2}$]B.(0,$\frac{9}{4}$]C.(0,3]D.(0,9]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.判斷條件“p:A?B”是結(jié)論“q:A∪B=B”的什么條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.如果函數(shù)f(x)=lg[x(x-$\frac{3}{2}$)+1],x∈[1,$\frac{3}{2}$],那么f(x)的最大值是0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為ρ2=$\frac{6}{1+si{n}^{2}θ}$.
(Ⅰ)將曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)若直線l:ρsinθ-ρcosθ+1=0與曲線C交于不同的兩點(diǎn)M,N,求|MN|.

查看答案和解析>>

同步練習(xí)冊答案