(本小題滿分12分)已知等差數(shù)列的前項和為,公差d0,,且成等比數(shù)列.
(1)求數(shù)列的通項公式;
(2)求數(shù)列的前項和公式.

(1);(2)

解析試題分析:(1)因為,所以. ①
因為成等比數(shù)列,所以.  ②  
由①②及d0,可得.所以.
(2)由,可知.
所以 , 所以
,
所以數(shù)列的前項和為.
考點:等差數(shù)列的性質(zhì);等比數(shù)列的性質(zhì);通項公式的求法;數(shù)列前n項和的求法。
點評:本題主要考查等差、等比數(shù)列的性質(zhì)以及用裂項相消法求數(shù)列的前n項和的方法。利用裂項相消求和時,一定要注意消掉的是那些項,剩下的是那些項。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列的首項為,對任意的,定義.
(Ⅰ) 若,
(i)求的值和數(shù)列的通項公式;
(ii)求數(shù)列的前項和;
(Ⅱ)若,且,求數(shù)列的前項的和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列滿足:,其中的前n項和.
(1)求的通項公式;
(2)若數(shù)列滿足,求的前n項和

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

數(shù)列的各項均為正數(shù),為其前項和,對于任意,總有成等差數(shù)列.
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)設,求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分16分)數(shù)列的前項和記為,且滿足
(1)求數(shù)列的通項公式;
(2)求和;
(3)設有項的數(shù)列是連續(xù)的正整數(shù)數(shù)列,并且滿足:

問數(shù)列最多有幾項?并求這些項的和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分13分)設數(shù)列的前項和為.已知,,.
(1)寫出的值,并求數(shù)列的通項公式;
(2)記為數(shù)列的前項和,求;
(3)若數(shù)列滿足,,求數(shù)列的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
已知數(shù)列滿足條件:,
(1)判斷數(shù)列是否為等比數(shù)列;  
(2)若,令, 記
證明: 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列的前項和為,對一切正整數(shù),點都在函數(shù)的圖像上.
(1)求數(shù)列的通項公式;
(2)設,求數(shù)列的前項和

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分)
已知是三個連續(xù)的自然數(shù),且成等差數(shù)列,成等比數(shù)列,求的值.

查看答案和解析>>

同步練習冊答案