A. | $[kπ-\frac{π}{3},kπ+\frac{π}{6}](k∈Z)$ | B. | $[kπ,kπ+\frac{π}{2}](k∈Z)$ | C. | $[kπ+\frac{π}{6},kπ+\frac{2π}{3}](k∈Z)$ | D. | $[kπ-\frac{π}{2},kπ](k∈Z)$ |
分析 由|f($\frac{π}{6}$)|=1及φ的范圍求出f(x)的解析式,根據(jù)這些函數(shù)的單調(diào)區(qū)間列出不等式組解出.
解答 解:∵f(x)≤|f($\frac{π}{6}$)|對(duì)x∈R恒成立,
∴f($\frac{π}{6}$)=1或f($\frac{π}{6}$)=-1.
∴$\frac{π}{3}$+φ=$\frac{π}{2}$+kπ,即φ=$\frac{π}{6}$+kπ,k∈Z.
∵$\frac{π}{2}$<|φ|<π,
∴φ=-$\frac{5π}{6}$.
∴f(x)=sin(2x-$\frac{5π}{6}$),
令-$\frac{π}{2}$+2kπ≤2x-$\frac{5π}{6}$≤$\frac{π}{2}$+2kπ,解得$\frac{π}{6}$+kπ≤x≤$\frac{2π}{3}$+kπ,
故選C.
點(diǎn)評(píng) 本題考查了三角函數(shù)的性質(zhì),求出φ的值是解題關(guān)鍵,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
y1 | y2 | 總計(jì) | |
x1 | a | b | a+b |
x2 | c | d | c+d |
總計(jì) | a+c | b+d | a+b+c+d |
A. | 越大 | B. | 越小 | C. | 無(wú)法判定 | D. | 以上均不對(duì) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 8 | B. | 18 | C. | 16 | D. | 32 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com