8.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(3,0),若向量$\overrightarrow{a}$+λ$\overrightarrow$與$\overrightarrow{c}$=(1,-2)垂直,則實(shí)數(shù)λ等于1.

分析 利用向量垂直,數(shù)量積為0,得到關(guān)于λ的方程解之.

解答 解:因?yàn)橄蛄?\overrightarrow{a}$=(1,2),$\overrightarrow$=(3,0),所以$\overrightarrow{a}$+λ$\overrightarrow$=(1+3λ,2),
因?yàn)橄蛄?\overrightarrow{a}$+λ$\overrightarrow$與$\overrightarrow{c}$=(1,-2)垂直,
所以($\overrightarrow{a}$+λ$\overrightarrow$)•$\overrightarrow{c}$=0即1+3λ-4=0,解得λ=1.
故答案為1

點(diǎn)評(píng) 本題考查了平面向量的坐標(biāo)運(yùn)算以及向量垂直的性質(zhì)運(yùn)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知函數(shù)f(x)=sin(2x+φ),其中$\frac{π}{2}$<|φ|<π,若$f(x)≤|f(\frac{π}{6})|$對(duì)x∈R恒成立,則f(x)的遞增區(qū)間是( 。
A.$[kπ-\frac{π}{3},kπ+\frac{π}{6}](k∈Z)$B.$[kπ,kπ+\frac{π}{2}](k∈Z)$C.$[kπ+\frac{π}{6},kπ+\frac{2π}{3}](k∈Z)$D.$[kπ-\frac{π}{2},kπ](k∈Z)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知隨機(jī)變量X服從正態(tài)分布N(3,4),且P(3≤X≤a)=0.35(其中a>3),則P(X>a)=( 。
A.0.35B.0.25C.0.15D.0.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右焦點(diǎn)分別是F1,F(xiàn)2,離心率為$\frac{{\sqrt{3}}}{2}$,過(guò)F1且垂直于x軸的直線被橢圓C截得的線段長(zhǎng)為1,A,B為橢圓C上的兩點(diǎn),O為坐標(biāo)原點(diǎn),設(shè)直線OA,OB,AB的斜率分別為k1,k2,k.
(1)求橢圓C的方程
(2)當(dāng)k1k2-1=k1+k2時(shí),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.設(shè)函數(shù)f(x)=|2x-1|+x+3,
(1)解不等式f(x)≤5; 
 (2)求函數(shù)y=f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.如圖所示,在正方體ABCD-A1B1C1D1中,M是A1D1的中點(diǎn),則直線MD與平面A1ACC1的位置關(guān)系是相交,直線MD與平面BCC1B1的位置關(guān)系是平行.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.在(0,$\frac{π}{2}$)上任取一個(gè)數(shù)x,使得1<tanx<2$\sqrt{3}$${∫}_{0}^{1}$xdx的概率是$\frac{1}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.下列命題正確的個(gè)數(shù)為( 。
①若函數(shù)f(x)滿足f(x)=f(2-x),則函數(shù)f(x)關(guān)于直線x=1對(duì)稱;
②函數(shù)y=f(x-1)與函數(shù)y=f(1-x)關(guān)于直線x=1對(duì)稱;
③函數(shù)y=f(x+1)與函數(shù)y=f(1-x)關(guān)于直線x=1對(duì)稱;
④垂直于同一直線的兩條直線的位置關(guān)系是平行或相交;
⑤$\overrightarrow{a}$=(1,2)沿x軸向右平移1個(gè)單位后$\overrightarrow{a}$=(2,2)
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.若函數(shù)y=f(x)的值域是[2,3],則函數(shù)g(x)=1-2f(3x+4)的值域是( 。
A.[2,3]B.[4,6]C.[-5,-3]D.[-6,-4]

查看答案和解析>>

同步練習(xí)冊(cè)答案