13.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,焦點在直線x-2y-2=0上,且離心率為$\frac{1}{2}$.
(1)求橢圓方程;
 (2)過P(3,1)作直線l與橢圓交于A,B兩點,P為線段AB的中點,求直線l的方程.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

1.已知二次函數(shù)f(x)=ax2+bx+c(a,b,c∈R)對任意實數(shù)x,都有f(x)≥x,且當x∈[1,3)時,有$f(x)≤\frac{1}{8}{(x+2)^2}$成立.
(1)證明:f(2)=2;
(2)若f(-2)=0,求f(x)的表達式;
(3)在題(2)的條件下設(shè)g(x)=f(x)-$\frac{mx}{2}$,x∈[0,+∞),若g(x)圖象上的點都位于直線y=$\frac{1}{4}$的上方,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.設(shè)函數(shù)f(x)=xn-lnx-1(n∈N*,n≥2).
(1)若n=2,求函數(shù)f(x)的極值;
(2)求證:①函數(shù)f(x)存在兩個零點x1,x2;
②x1x2>e${\;}^{\frac{2}{n}-2}$(e為自然對數(shù)的底數(shù).)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.如圖,圓x2+y2=8內(nèi)有一點P(-1,2),AB為過點P的弦.
(1)當弦AB的傾斜角為135°時,求AB所在的直線方程及|AB|;
(2)當弦AB被點P平分時,寫出直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.設(shè)向量$\overrightarrow{AB}=({1,2cosθ}),\overrightarrow{BC}=({m,-4}),θ∈({-\frac{π}{2},\frac{π}{2}})$.若對任意$m∈[{-1,0}],\overrightarrow{AC}•\overrightarrow{BC}≤10$恒成立,則$sin({θ-\frac{π}{2}})$的取值范圍為$[{-1,-\frac{3}{4}}]$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.在△ABC中,b=2,$cosC=\frac{3}{4}$,△ABC的面積為$\frac{{\sqrt{7}}}{4}$.
(1)求a的值;
(2)求sinA值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.下列命題:
①在一個2×2列聯(lián)表中,由計算得k2=6.679,則有99%的把握確認這兩個變量間有關(guān)系.
②隨機變量X服從正態(tài)分布N(1,2),則P(X<0)=P(x>2);
③若二項式${({x+\frac{2}{x^2}})^n}$的展開式中所有項的系數(shù)之和為243,則展開式中x-4的系數(shù)是40
④連擲兩次骰子得到的點數(shù)分別為m,n,記向量$\overrightarrow{a}$=(m,n)與向量$\overrightarrow$=(1,-1)的夾角為θ,則θ∈(0,$\frac{π}{2}$]的概率是$\frac{7}{12}$.
⑤若(x-2)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,則a1+a2+a3+a4+a5=31;
其中正確命題的序號為①②④⑤.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.對稱軸為坐標軸的橢圓與的焦點F1(-$\sqrt{3}$,0),F(xiàn)2($\sqrt{3}$,0),P為橢圓上任意一點,滿足|PF1|+|PF2|=4.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)不過原點O的直線l:y=kx+m與橢圓交于P,Q兩點,滿足直線OP,PQ,OQ的斜率依次成等比數(shù)列,求△OPQ面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,且過點($\sqrt{2}$,$\frac{\sqrt{2}}{2}$).
(Ⅰ)求橢圓方程;
(Ⅱ)設(shè)不過原點O的直線l:y=kx+m(k≠0),與該橢圓交于P、Q兩點,直線OP、OQ的斜率一次為k1、k2,滿足4k=k1+k2
(i)當k變化時,m2是否為定值?若是,求出此定值,并證明你的結(jié)論;若不是,請說明理由;
(ii)求△OPQ面積的取值范圍.

查看答案和解析>>

同步練習冊答案