【題目】為了研究某種藥物,用小白鼠進行試驗,發(fā)現(xiàn)藥物在血液內(nèi)的濃度與時間的關(guān)系因使用方式的不同而不同。若使用注射方式給藥,則在注射后的3小時內(nèi),藥物在白鼠血液內(nèi)的濃度與時間t滿足關(guān)系式:,若使用口服方式給藥,則藥物在白鼠血液內(nèi)的濃度與時間t滿足關(guān)系式:現(xiàn)對小白鼠同時進行注射和口服該種藥物,且注射藥物和口服藥物的吸收與代謝互不干擾。

1)若a=1,求3小時內(nèi),該小白鼠何時血液中藥物的濃度最高,并求出最大值?

2)若使小白鼠在用藥后3小時內(nèi)血液中的藥物濃度不低于4,求正數(shù)a的取值范圍。

【答案】1)見解析;(20

【解析】

1)藥物在白鼠血液內(nèi)的濃度y與時間t的關(guān)系為:當a1時,

yy1+y2;

0t1時,y=﹣t4=﹣(2,所以ymaxf;

1t3時,∵,所以ymax72 (當t 時取到),因為 ,故ymaxf

2)由題意y

,又0t1,得出a1;

由于1t3得到,令,則

所以,綜上得到以0

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,網(wǎng)格紙上小正方形的邊長為1,粗實線畫出的是某幾何體的三視圖,則該幾何體外接球的表面積是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C:+=1(a>b>0)的離心率為,直線l:x+2y=4與橢圓有且只有一個交點T.

(I)求橢圓C的方程和點T的坐標;

)O為坐標原點,與OT平行的直線l′與橢圓C交于不同的兩點A,B,直線l′與直線l交于點P,試判斷是否為定值,若是請求出定值,若不是請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解一家企業(yè)生產(chǎn)的某類產(chǎn)品的使用壽命(單位:小時),現(xiàn)從中隨機抽取一定數(shù)量的產(chǎn)品進行測試,繪制頻率分布直方圖如圖所示.

(1)假設(shè)同一組中的每個數(shù)據(jù)可用該組區(qū)間的中點值代替,估算這批產(chǎn)品的平均使用壽命;

(2)已知該企業(yè)生產(chǎn)的這類產(chǎn)品有甲、乙兩個系列,產(chǎn)品使用壽命不低于60小時為合格,合格產(chǎn)品中不低于90小時為優(yōu)異,其余為一般.現(xiàn)從合格產(chǎn)品中,用分層抽樣的方法抽取70件,其中甲系列有35件(1件優(yōu)異).請完成下面的列聯(lián)表,并根據(jù)列聯(lián)表判斷能否有的把握認為產(chǎn)品優(yōu)異與系列有關(guān)?

甲系列

乙系列

合計

優(yōu)異

一般

合計

參考數(shù)據(jù):

參考公式:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在空間幾何體ABCDFE中,底面是邊長為2的正方形,,.

(1)求證:AC//平面DEF;

(2)已知,若在平面上存在點,使得平面,試確定點的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓過點,且離心率為.過拋物線上一點的切線交橢圓兩點.

(Ⅰ)求橢圓的方程;

(Ⅱ)是否存在直線,使得,若存在,求出的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“雙十一網(wǎng)購狂歡節(jié)”源于淘寶商城(天貓)2009年11月11日舉辦的促銷活動,當時參與的商家數(shù)量和促銷力度均有限,但營業(yè)額遠超預(yù)想的效果,于是11月11日成為天貓舉辦大規(guī)模促銷活動的固定日期.如今,中國的“雙十一”已經(jīng)從一個節(jié)日變成了全民狂歡的“電商購物日”.某淘寶電商為分析近8年“雙十一”期間的宣傳費用(單位:萬元)和利潤(單位:十萬元)之間的關(guān)系,搜集了相關(guān)數(shù)據(jù),得到下列表格:

(1)請用相關(guān)系數(shù)說明之間是否存在線性相關(guān)關(guān)系(當時,說明之間具有線性相關(guān)關(guān)系);

(2)建立關(guān)于的線性回歸方程(系數(shù)精確到),預(yù)測當宣傳費用為萬元時的利潤,

附參考公式:回歸方程最小二乘估計公式分別為

,,相關(guān)系數(shù)

參考數(shù)據(jù):

,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】公交車的數(shù)量太多容易造成資源浪費,太少又難以滿足乘客的需求,為了合理布置車輛,公交公司在2路車的乘客中隨機調(diào)查了50名乘客,經(jīng)整理,他們候車時間(單位:)的莖葉圖如下:

(Ⅰ)將候車時間分為八組,作出相應(yīng)的頻率分布直方圖;

(Ⅱ)若公交公司將2路車發(fā)車時間調(diào)整為每隔15發(fā)一趟車,那么上述樣本點將發(fā)生變化(例如候車時間為9的不變,候車時間為17的變?yōu)?/span>2),現(xiàn)從2路車的乘客中任取5人,設(shè)其中候車時間不超過10的乘客人數(shù)為,求的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2017·北京高考)由四棱柱ABCDA1B1C1D1截去三棱錐C1B1CD1后得到的幾何體如圖所示.四邊形ABCD為正方形,OACBD的交點,EAD的中點,A1E⊥平面ABCD.

(1)證明:A1O∥平面B1CD1;

(2)設(shè)MOD的中點,證明:平面A1EM⊥平面B1CD1.

查看答案和解析>>

同步練習(xí)冊答案