【題目】已知?jiǎng)訄A過點(diǎn),且在軸上截得的弦長(zhǎng)為4.
(1)求動(dòng)圓圓心的軌跡方程;
(2)過點(diǎn)的直線與曲線交于點(diǎn),,與軸交于點(diǎn),設(shè),,求證:是定值.
【答案】(1);(2)詳見解析.
【解析】
(1)設(shè)動(dòng)圓心C(x,y),利用半徑相等可得:,化簡(jiǎn)即可得出動(dòng)圓圓心C的軌跡方程.
(2)設(shè)直線l的方程為:x=ty+2.設(shè)A(x1,y1),B(x2,y2).與拋物線方程聯(lián)立化為:y2﹣4ty﹣8=0.利用根與系數(shù)的關(guān)系、向量坐標(biāo)運(yùn)算性質(zhì)即可得出.
(l)設(shè)動(dòng)圓圓心坐標(biāo)為,
由題意得:動(dòng)圓半徑,圓心到軸的距離為.
所以,
化簡(jiǎn)得:,
所以動(dòng)圓圓心的軌跡方程為.
(2)設(shè)直線的方程為,
代入,得.
設(shè),,
則,.
由,所以,.
因?yàn)?/span>,所以,
所以.
同理可得,,
所以.
即是定值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】籃球運(yùn)動(dòng)于1891年起源于美國(guó),它是由美國(guó)馬薩諸塞州斯普林菲爾德(舊譯麻省春田)市基督教青年會(huì)()訓(xùn)練學(xué)校的體育教師詹姆士·奈史密斯博士()發(fā)明.它是以投籃、上籃和扣籃為中心的對(duì)抗性體育運(yùn)動(dòng)之一,是可以增強(qiáng)體質(zhì)的一種運(yùn)動(dòng).已知籃球的比賽中,得分規(guī)則如下:3分線外側(cè)投入可得3分,3分線內(nèi)側(cè)投入可得2分,不進(jìn)得0分.經(jīng)過多次試驗(yàn),某人投籃100次,有20個(gè)是3分線外側(cè)投入,30個(gè)是3分線內(nèi)側(cè)投入,其余不能入籃,且每次投籃為相互獨(dú)立事件.
(1)求該人在4次投籃中恰有三次是3分線外側(cè)投入的概率;
(2)求該人在4次投籃中至少有一次是3分線外側(cè)投入的概率;
(3)求該人兩次投籃后得分的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),。
(1)求的單調(diào)區(qū)間;
(2)討論零點(diǎn)的個(gè)數(shù);
(3)當(dāng)時(shí),設(shè)恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,四邊形是矩形,平面平面,點(diǎn)分別為中點(diǎn).
(1)求證:平面.
(2)若.
①求二面角的余弦值.
②求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為平行四邊形,,,,平面平面,點(diǎn)為上一點(diǎn).
(1)若平面,求證:點(diǎn)為中點(diǎn);
(2)求證:平面平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列滿足(),().
(1)若,證明:是等比數(shù)列;
(2)若存在,使得,,成等差數(shù)列.
① 求數(shù)列的通項(xiàng)公式;
② 證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓C:(a>b>0)的右焦點(diǎn)為F,橢圓C上的兩點(diǎn)A,B關(guān)于原點(diǎn)對(duì)稱,且滿足,|FB|≤|FA|≤2|FB|,則橢圓C的離心率的取值范圍是( )
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn),直線,設(shè)圓的半徑為1, 圓心在上.
(1)若圓心也在直線上,過點(diǎn)作圓的切線,求切線方程;
(2)若圓上存在點(diǎn),使,求圓心的橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱的所有棱長(zhǎng)都是2,平面ABC,D,E分別是AC,的中點(diǎn).
求證:平面;
求二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com