【題目】已知數(shù)列滿足(),().
(1)若,證明:是等比數(shù)列;
(2)若存在,使得,,成等差數(shù)列.
① 求數(shù)列的通項公式;
② 證明:.
【答案】(1)見解析;(2)①,②見解析
【解析】
(1)對兩邊同除以并整理得:,結合即可證得是等比數(shù)列,問題得證。
(2)①設,由(1)可得,結合,,成等差數(shù)列即可求得,問題得解。
②將轉化成,令,且,即可再轉化成,記(),利用導數(shù)即可求得,問題得證。
(1)由,得,得,即,
因為,所以,所以(),
所以是以為首項,2為公比的等比數(shù)列.
(2)① 設,由(1)知,, 所以,即,
所以.因為,,成等差數(shù)列,
則,所以,所以,
所以,即.
② 要證,
即證,即證.
設,則,且,
從而只需證,當時,. 設(),
則,所以在上單調遞增,
所以,即,因為,所以,
所以,原不等式得證.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若曲線在點處的切線方程是,求函數(shù)在上的值域;
(2)當時,記函數(shù),若函數(shù)有三個零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,點是圓:上的動點,定點,線段的垂直平分線交于,記點的軌跡為.
(Ⅰ)求軌跡的方程;
(Ⅱ)若動直線:與軌跡交于不同的兩點、,點在軌跡上,且四邊形為平行四邊形.證明:四邊形的面積為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知動圓過點,且在軸上截得的弦長為4.
(1)求動圓圓心的軌跡方程;
(2)過點的直線與曲線交于點,,與軸交于點,設,,求證:是定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某大學生參加社會實踐活動,對某公司1月份至6月份銷售某種配件的銷售量及銷售單價進行了調查,銷售單價和銷售量之間的一組數(shù)據(jù)如下表所示:
月份 | 1 | 2 | 3 | 4 | 5 | 6 |
銷售單價(元) | 9 | 9.5 | 10 | 10.5 | 11 | 8 |
銷售量(件) | 11 | 10 | 8 | 6 | 5 | 14.2 |
(1)根據(jù)1至5月份的數(shù)據(jù),先求出關于的回歸直線方程;6月份的數(shù)據(jù)作為檢驗數(shù)據(jù).若由回歸直線方程得到的預測數(shù)據(jù)與檢驗數(shù)據(jù)的誤差不超過,則認為所得到的回歸直線方程是理想的.試問所求得的回歸直線方程是否理想?
(2)預計在今后的銷售中,銷售量與銷售單價仍然服從(1)中的回歸關系,如果該種機器配件的成本是元/件,那么該配件的銷售單價應定為多少元才能獲得最大利潤?(注:利潤=銷售收入-成本).
參考數(shù)據(jù):,.
參考公式:對于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計分別為:,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)),在以坐標原點為極點,軸的正半軸為極軸的極坐標系中,曲線的極坐標方程為(且).
(I)求直線的極坐標方程及曲線的直角坐標方程;
(Ⅱ)已知是直線上的一點,是曲線上的一點, ,,若的最大值為2,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在四棱錐P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中點.
(1)求證:AE⊥平面PCD;
(2)求PB和平面PAD所成的角的大;
(3)求二面角A-PD-C的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠共有名工人,已知這名工人去年完成的產品數(shù)都在區(qū)間(單位:萬件)內,其中每年完成萬件及以上的工人為優(yōu)秀員工,現(xiàn)將其分成組,第組、第組、第組、第組、第組對應的區(qū)間分別為,,,,,并繪制出如圖所示的頻率分布直方圖.
(1)求的值,并求去年優(yōu)秀員工人數(shù);
(2)選取合適的抽樣方法從這名工人中抽取容量為的樣本,求這組分別應抽取的人數(shù);
(3)現(xiàn)從(2)中人的樣本中的優(yōu)秀員工中隨機選取名傳授經驗,求選取的名工人在同一組的概率.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com