【題目】已知橢圓的中心在原點,焦點在軸上,離心率為,且經(jīng)過點,直線交橢圓于不同的兩點.
(1)求橢圓的方程;
(2)求的取值范圍;
(3)若直線不過點,求證:直線的斜率互為相反數(shù).
【答案】(1);(2);(3)證明見解析.
【解析】
(1)設出橢圓方程的標準形式,由離心率的值及橢圓過點(4,1)求出待定系數(shù),得到橢圓的標準方程;
(2)把直線方程代入橢圓的方程,由判別式大于0,求出m的范圍;
(3)由方程聯(lián)立可得到兩根之和、兩根之積,從而可求直線MA,MB斜率之和,化簡可得結(jié)論.
(1) 設橢圓的方程為 ,因為 ,所以 ,
又因為 ,所以 ,解得 ,故橢圓方程為 .
(2) 將 y=x+m 代入 并整理得 , ,解得 -5<m<5.
(3) 設直線MA,MB 的斜率分別為 ,只要證明 ,
設 ,
則 , ,
,
分子
所以直線 MA,MB 的斜率互為相反數(shù).
科目:高中數(shù)學 來源: 題型:
【題目】下列說法錯誤的是( )
A. 在殘差圖中,殘差點分布的帶狀區(qū)域的寬度越狹窄,其模型擬合的精度越高
B. 在線性回歸分析中,回歸直線不一定過樣本點的中心
C. 在回歸分析中, 為0.98的模型比為0.80的模型擬合的效果好
D. 自變量取值一定時,因變量的取值帶有一定隨機性的兩個變量之間的關系叫做相關關系
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某4S店開展汽車銷售業(yè)績比賽,現(xiàn)統(tǒng)計甲、乙兩名銷售員連續(xù)5個月的銷售業(yè)績(單位:臺)的莖葉圖如圖所示.
(1)作為業(yè)務主管的你認為誰的銷售情況好?請說明理由;
(2)若分別從甲、乙的銷售業(yè)績中任取一次,求兩人中至少有一人銷售業(yè)績在80臺以上的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知△ABC的內(nèi)角A、B、C的對邊分別為a、b、c,且3bcos A=ccos A+acosC.
(1)求tanA的值;
(2)若a=4 ,求△ABC的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣1|+|x﹣a|.
(1)若a=﹣1,解不等式f(x)≥3;
(2)如果x∈R,使得f(x)<2成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某生產(chǎn)企業(yè)研發(fā)了一種新產(chǎn)品,該產(chǎn)品在試銷一個階段后得到銷售單價(單位:元)和銷售量(單位:萬件)之間的一組數(shù)據(jù),如下表所示:
銷售單價/元 | 9 | 9.5 | 10 | 10.5 | 11 |
銷售量/萬件 | 11 | 10 | 8 | 6 | 5 |
(1)根據(jù)表中數(shù)據(jù),建立關于的回歸方程;
(2)從反饋的信息來看,消費者對該產(chǎn)品的心理價(單位:元/件)在內(nèi),已知該產(chǎn)品的成本是元/件(其中),那么在消費者對該產(chǎn)品的心理價的范圍內(nèi),銷售單價定為多少時,企業(yè)才能獲得最大利潤?(注:利潤=銷售收入-成本)
參考數(shù)據(jù):,.
參考公式:,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設是平面直角坐標系中兩兩不同的四點,若,,且,則稱調(diào)和分割.已知平面上的點調(diào)和分割點,則下列說法正確的是
A. 可能線段的中點
B. 可能線段的中點
C. 可能同時在線段上
D. 不可能同時在線段的延長線上
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校為了提高學生的身體素質(zhì),決定組建學校足球隊,學校為了解學生的身體素質(zhì),對他們的體重進行了測量,將所得的數(shù)據(jù)整理后,畫出了頻率分布直方圖(如圖),已知圖中從左到右3個小組的頻率之比為1:2:3,其中第2小組的頻數(shù)為12.
(1)求該校報名學生的總?cè)藬?shù);
(2)從報名的學生中任選3人,設X表示體重超過60kg的學生人數(shù),求X的數(shù)學期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com