分析 (1)利用中位線定理、面面線面平行的判定與性質定理即可證明.
(2)利用余弦定理可得cos∠GHF,根據(jù)VC-FGH=VF-CGH,即可得出.
解答 (1)證明:∵F,G,H,分別是PC,AC,BC的中點,
∴GH∥AB,F(xiàn)G∥PA.
∵GH?平面PAB,F(xiàn)G?平面PAB,
∴GH∥平面PAB,F(xiàn)G∥平面PAB.
∵FG∩GH=G,∴平面PAB∥平面FGH.
∵HI?平面FGH,∴HI∥平面ABD.
(2)解:由題意可得:HF=$\frac{\sqrt{5}}{2}$,HG=1,GF=$\frac{\sqrt{7}}{2}$.
故cos∠GHF=$\frac{1+\frac{5}{4}-\frac{7}{4}}{2×1×\frac{\sqrt{5}}{2}}$=$\frac{\sqrt{5}}{10}$,故sin∠GHF=$\frac{\sqrt{95}}{10}$,
記點C到平面FGH的距離為h,
∵VC-FGH=VF-CGH,
∴$\frac{1}{3}×\frac{1}{2}×\frac{1}{2}×\frac{\sqrt{3}}{2}×1$=$\frac{1}{3}×\frac{1}{2}×1×\frac{\sqrt{5}}{2}×\frac{\sqrt{95}}{2}$×h,
解得h=$\frac{\sqrt{57}}{19}$.
點評 本題考查了面面線面平行的判定與性質定理、三角形中位線定理、“等體積變形”,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\frac{\sqrt{5}}{2}$ | C. | 2$\sqrt{2}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | -1 | C. | 0 | D. | -2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com