16.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{|{2}^{x}-a|,x<2}\\{{x}^{2}-3ax+2{a}^{2},x≥2}\end{array}\right.$,若函數(shù)f(x)恰有2個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是1≤a<2,或a≥4.

分析 分段函數(shù)求解得出2x-a=0,x2-3ax+2a2=(x-a)(x-2a),分類分別判斷零點(diǎn),總結(jié)出答案.

解答 解:∵y=2x,x<2,0<2x<4,
∴0<a<4時(shí),2x-a=0,有一個(gè)解,
a≤0或a≥4,2x-a=0無解
∵x2-3ax+2a2=(x-a)(x-2a),
∴當(dāng)a∈(0,1)時(shí),
方程x2-3ax+2a2=0在[1,+∞)上無解;
當(dāng)a∈[1,2)時(shí),
方程x2-3ax+2a2=0在[1,+∞)上有且僅有一個(gè)解;
當(dāng)a∈[2,+∞)時(shí),
方程x2-3ax+2a2=0在x∈[1,+∞)上有且僅有兩個(gè)解;
綜上所述,函數(shù)f(x)恰有2個(gè)零點(diǎn),1≤a<2,或a≥4
故答案為:1≤a<2,或a≥4

點(diǎn)評(píng) 本題考查了分段函數(shù)的性質(zhì)的應(yīng)用及分類討論的思想應(yīng)用,把問題分解研究的問題,拆開來研究,從多種角度研究問題,分析問題的能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.若實(shí)數(shù)x,y,z滿足x+2y+z=1,求x2+y2+z2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.如果關(guān)于x的不等式x2<ax+b的解集是{x|1<x<3},那么ba等于(  )
A.-81B.81C.-64D.64

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.四棱錐P-ABCD中,△PCD為正三角形,底面邊長(zhǎng)為1的正方形,平面PCD⊥平面ABCD,M為底面內(nèi)一動(dòng)點(diǎn),當(dāng)$MA=\sqrt{2}PM$時(shí),點(diǎn)M在底面正方形內(nèi)(包括邊界)的軌跡為( 。
A.一個(gè)點(diǎn)B.線段C.D.圓弧

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知圓O:x2+y2=16及圓內(nèi)一點(diǎn)F(-3,0),過F任作一條弦AB.
(1)求△AOB面積的最大值及取得最大值時(shí)直線AB的方程;
(2)若點(diǎn)M在x軸上,且使得MF為△AMB的一條內(nèi)角平方線,求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.某風(fēng)險(xiǎn)投資公司選擇了三個(gè)投資項(xiàng)目,設(shè)每個(gè)項(xiàng)目成功的概率都為$\frac{1}{2}$,且相互之間設(shè)有影響,若每個(gè)項(xiàng)目成功都獲利20萬元,若每個(gè)項(xiàng)目失敗都虧損5萬元,該公司三個(gè)投資項(xiàng)目獲利的期望為(  )
A.30萬元B.22.5萬元C.10萬元D.7.5萬元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.?dāng)?shù)列{an}中,an+2-2an+1+an=1(n∈N*),a1=1,a2=3..
(1)求證:{an+1-an}是等差數(shù)列;
(2)求數(shù)列{$\frac{1}{{a}_{n}}$}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且S3=-9,a4+a6=a5
(1)求{an}的通項(xiàng)公式;
(2)求數(shù)列{a${\;}_{n}+{2}^{{a}_{n}}$}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知f(x)為偶函數(shù),且x≥0時(shí),f(x)=x-[x]([x]表示不超過x的最大整數(shù)).設(shè)g(x)=f(x)-kx-k(k∈R),若k=1,則函數(shù)g(x)有2個(gè)零點(diǎn);若函數(shù)g(x)三個(gè)不同的零點(diǎn),則k的取值范圍是$({-\frac{1}{3}}\right.,\left.{-\frac{1}{4}}]∪[{\frac{1}{3},\frac{1}{2}})$.

查看答案和解析>>

同步練習(xí)冊(cè)答案