A. | ?x0∈R,使得x0+$\frac{1}{x0}$=$\frac{3}{2}$ | B. | ?x∈(0,+∞),ex>x+1 | ||
C. | ?x0∈R,使得x${\;}_{{0}^{\;}}$2-x0+1=0 | D. | ?x∈(0,π),sinx>cosx |
分析 A.利用基本不等式的性質(zhì)可得:當(dāng)x>0時(shí),$x+\frac{1}{x}$≥2;當(dāng)x<0時(shí),$x+\frac{1}{x}$≤-2,即可判斷出正誤;
B.令f(x)=ex-(x+1),f′(x)=ex-1,利用導(dǎo)數(shù)研究其單調(diào)性即可判斷出正誤;
C.對(duì)于方程:x2-x+1=0,△<0,可得?x∈R,x2-x+1>0,即可判斷出正誤;
D.取x=$\frac{π}{6}$,$sin\frac{π}{6}$=$\frac{1}{2}$$<\frac{\sqrt{3}}{2}$=$cos\frac{π}{6}$,即可判斷出正誤.
解答 解:A.當(dāng)x>0時(shí),$x+\frac{1}{x}$≥2;當(dāng)x<0時(shí),$x+\frac{1}{x}$≤-2,因此不存在x0∈R,使得x0+$\frac{1}{{x}_{0}}$=$\frac{3}{2}$,因此不正確;
B.令f(x)=ex-(x+1),f′(x)=ex-1,因此?x∈(0,+∞),f′(x)>0,∴函數(shù)f(x)單調(diào)遞增,∴f(x)>f(0)=0,因此ex>x+1,正確;
C.對(duì)于方程:x2-x+1=0,∵△=1-4<0,∴?x∈R,x2-x+1>0,∴C不正確;
D.取x=$\frac{π}{6}$,$sin\frac{π}{6}$=$\frac{1}{2}$$<\frac{\sqrt{3}}{2}$=$cos\frac{π}{6}$,因此不正確.
綜上可得:只有B正確.
故選:B.
點(diǎn)評(píng) 本題考查了簡(jiǎn)易邏輯的判定方法、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、一元二次方程的實(shí)數(shù)根與判別式的關(guān)系,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a2+b2≤4 | B. | a2+b2≥4 | C. | $\frac{1}{{a}^{2}}$+$\frac{1}{^{2}}$≤4 | D. | $\frac{1}{{a}^{2}}$+$\frac{1}{^{2}}$≥4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com