2.在數(shù)列{an}中,設(shè)S1=a1+a2+a3+a4+…+an,S2=an+1+an+2+an+3+…+a2n,S3=a2n+1+a2n+3+…+a3n
(1)如果{an}是以d為公差的等差數(shù)列,求證S1,S2,S3也是等差數(shù)列,并求其公差;
(2)如果{an}是以q為公比的等比數(shù)列,求證S1,S2,S3也是等比數(shù)列,并求其公比.

分析 (1)由題意分別寫(xiě)出等差數(shù)列的第一個(gè)n項(xiàng)和,第二個(gè)n項(xiàng)和,第三個(gè)n項(xiàng)和,再由等差數(shù)列的定義證明S1,S2,S3也是等差數(shù)列,并求其公差;
(2)由題意分別寫(xiě)出等比數(shù)列的第一個(gè)n項(xiàng)和,第二個(gè)n項(xiàng)和,第三個(gè)n項(xiàng)和,再由等比數(shù)列的定義證明S1,S2,S3也是等比數(shù)列,并求其公比.

解答 證明:(1)∵{an}是以d為公差的等差數(shù)列,
∴${S}_{1}=n{a}_{1}+\frac{n(n-1)d}{2}$,${S}_{2}=n{a}_{n+1}+\frac{n(n-1)d}{2}=n({a}_{1}+nd)+\frac{n(n-1)d}{2}$,${S}_{3}=n{a}_{2n+1}+\frac{n(n-1)d}{2}=n({a}_{1}+2nd)+\frac{n(n-1)d}{2}$.
則${S}_{2}-{S}_{1}={n}^{2}d$,${S}_{3}-{S}_{2}={n}^{2}d$,∴${S}_{2}-{S}_{1}={S}_{3}-{S}_{2}={n}^{2}d$.
即S1,S2,S3也是等差數(shù)列,其公差為n2d;
(2)∵{an}是以q為公比的等比數(shù)列,
若q=1,則S1=na1,S2=na1,S3=na1,∴S1,S2,S3也是等比數(shù)列,其公比為1;
若q≠1,則${S}_{1}=\frac{{a}_{1}(1-{q}^{n})}{1-q}$,${S}_{2}=\frac{{a}_{n+1}(1-{q}^{n})}{1-q}=\frac{{a}_{1}{q}^{n}(1-{q}^{n})}{1-q}$,${S}_{3}=\frac{{a}_{2n+1}(1-{q}^{n})}{1-q}=\frac{{a}_{1}{q}^{2n}(1-{q}^{n})}{1-q}$.
∴$\frac{{S}_{2}}{{S}_{1}}={q}^{n},\frac{{S}_{3}}{{S}_{2}}={q}^{n}$,
∴S1,S2,S3也是等比數(shù)列,其公比為qn
綜上S1,S2,S3也是等比數(shù)列,其公比為qn

點(diǎn)評(píng) 本題考查等差數(shù)列和等比數(shù)列的通項(xiàng)公式,考查了等差數(shù)列和等比數(shù)列的性質(zhì),是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.若將函數(shù)f(x)=x5表示為f(x)=a0+a1(2+x)+a2(2+x)2+…a5(2+x)5,其中a0,a1,a2,…,a5為實(shí)數(shù),則a3=(  )
A.80B.-80C.-40D.40

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.設(shè)直角三角形ABC三邊長(zhǎng)成等比數(shù)列,公比為q(q>1),則q2的值為$\frac{\sqrt{5}+1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.若2sinα-cosα=$\sqrt{5}$,則sinα=$\frac{2\sqrt{5}}{5}$,tan(α-$\frac{π}{4}$)=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.如圖程序運(yùn)行后,輸出的結(jié)果為22.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知等差數(shù)列{an}滿足a2+a8=10,且a1,a2,a4成等比數(shù)列,則a2016=(  )
A.2014B.2015C.2016D.2017

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.在等差數(shù)列{an}中,若前10項(xiàng)的和S10=60,且a7=7,則a4=( 。
A.4B.-4C.5D.-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.求下列各式的值.
(1)$\frac{cos75°-sin75°}{cos75°+sin75°}$;
(2)tan36°+tan84°-$\sqrt{3}$tan36°tan84°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖,P是矩形ABCD所在平面外一點(diǎn),PA⊥平面ABCD,E,F(xiàn)分別是AB,PD的中點(diǎn),求證:AF∥平面PEC.

查看答案和解析>>

同步練習(xí)冊(cè)答案