3.某中學(xué)高一年級(jí)進(jìn)行學(xué)生性別與科目偏向問(wèn)卷調(diào)查,共收回56份問(wèn)卷,下面是2×2列聯(lián)表:
男生女生合計(jì)
偏理科281644
偏文科4812
合計(jì)322456
(1)有多大把握認(rèn)為科目偏向與性別有關(guān)?
(2)如果按分層抽樣的方法選取14人,又在這14人中選取2人進(jìn)行面對(duì)面交流,求選中的2人恰好都偏文科的概率;
(3)在(2)的條件下,求一次選出的2人中男生人數(shù)X的分布列及期望.
附:K2=$\frac{{n{{({ad-bc})}^2}}}{{({a+b})({a+d})({a+c})({b+d})}}$
P(K2>k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

分析 (1)求出K2=3.535>2.706,從而有90%的把握認(rèn)為科目偏向與性別有關(guān).
(2)按分層抽樣的方法選出14人,偏理科的人數(shù)為$\frac{14}{56}×44=11$,偏文科的人數(shù)為$\frac{14}{56}×12=3$.由此利用組合知識(shí)可以求出概率.
(3)按分層抽樣的方法選出14人,男生人數(shù)為$\frac{14}{56}×32=8$,女生人數(shù)為$\frac{14}{56}×24=6$.設(shè)一次選出2人中選到男生人數(shù)為X,則X所有可能的取值為0,1,2.求出相應(yīng)的概率,即可求一次選出的2人中男生人數(shù)X的分布列及期望.

解答 解:(1)${k^2}=\frac{{56{{({28×8-16×4})}^2}}}{44×12×32×24}=3,535>2.706$.所以有90%的把握認(rèn)為科目偏向與性別有關(guān).
(2)按分層抽樣的方法選出14人,偏理科的人數(shù)為$\frac{14}{56}×44=11$,偏文科的人數(shù)為$\frac{14}{56}×12=3$.
記“在這14人中選2人偏文科”為事件A.則$P(A)=\frac{C_3^2}{{C_{14}^2}}=\frac{3}{91}$.
(3)按分層抽樣的方法選出14人,男生人數(shù)為$\frac{14}{56}×32=8$,女生人數(shù)為$\frac{14}{56}×24=6$.
設(shè)一次選出2人中選到男生人數(shù)為X,則X所有可能的取值為0,1,2.$P({X=0})=\frac{C_8^0C_6^2}{{C_{14}^2}}=\frac{15}{91},P({X=1})=\frac{C_8^1C_6^1}{{C_{14}^2}}=\frac{48}{91},P({X=2})=\frac{C_8^2C_6^0}{{C_{14}^2}}=\frac{28}{91}$,
X的分布列為

X012
P$\frac{15}{91}$$\frac{48}{91}$$\frac{28}{91}$
X的數(shù)學(xué)期望$E(X)=0×\frac{15}{91}+1×\frac{48}{91}+2×\frac{28}{91}=\frac{104}{91}≈1.14$.

點(diǎn)評(píng) 本題考查獨(dú)立檢驗(yàn)的應(yīng)用,考查概率的求法,考查分布列及期望,正確求出概率是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.A={x|x2-2x+1-m2≤0},B={x||1-$\frac{x-1}{3}$|≤2},B?A,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知函數(shù)f(x)=x2-2ax-2alnx(a∈R),則下列說(shuō)法錯(cuò)誤的是( 。
A.當(dāng)a≥$\frac{1}{2}$時(shí),函數(shù)y=f(x)有零點(diǎn)B.若函數(shù)y=f(x)有零點(diǎn),則a≥$\frac{1}{2}$
C.存在a<0,使函數(shù)y=f(x)有唯一零點(diǎn)D.若函數(shù)y=f(x)有唯一零點(diǎn),則a≤1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.在平面直角坐標(biāo)系xOy中,已知經(jīng)過(guò)原點(diǎn)O的直線l與圓C:x2+y2-4x-1=0交于A,B兩點(diǎn).
(1)若直線m:ax-2y+a+2=0(a>0)與圓C相切,切點(diǎn)為B,求直線l的方程;
(2)若OB=2OA,求直線l的方程;
(3)若圓C與x軸的正半軸的交點(diǎn)為D,設(shè)直線L的斜率k,令kt=1,設(shè)△ABD面積為f(t),求f(t)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知直線y=kx+3與圓x2+y2-6x-4y+5=0相交于M,N兩點(diǎn),若|MN|=2$\sqrt{3}$,則k的值是(  )
A.2或-$\frac{1}{2}$B.-2或-$\frac{1}{2}$C.-2或$\frac{1}{2}$D.2或$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.(1)已知函數(shù)log${\;}_{\frac{1}{2}}$(x2-2x+a)的定義域?yàn)镽,求實(shí)數(shù)a的取值范圍.
(2)已知函數(shù)y=log${\;}_{\frac{1}{2}}$(x2-2x+a)的值域?yàn)镽,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖,在直三棱柱A1B1C1-ABC中,AB⊥AC,AA1=2AB=2AC,點(diǎn)D是BC的中點(diǎn).
(I)求異面直線A1B與C1D所成角的余弦值.
(Ⅱ)求二面角D-AC1-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖,在四棱錐P-ABCD中,PD⊥ABCD,底面是菱形,設(shè)DA=DP=4,E,F(xiàn)分別為AB,PC的中點(diǎn).
(1)求空間四面體BCFE的體積V的最大值;
(2)試判定直線AP與直線EF所成角,以及直線AC與平面PDB所成角的大小是否為定值.若是定值,請(qǐng)確定其大;若不是定值,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.設(shè)函數(shù)f(x)=ax3+bx2+cx+d有兩個(gè)極值點(diǎn)x1,x2,若點(diǎn)P(x1,f(x1))為坐標(biāo)原點(diǎn),點(diǎn)Q(x2,f(x2))在圓C:(x-2)2+(y-3)2=1上運(yùn)動(dòng)時(shí),則函數(shù)f(x)圖象的切線斜率的最大值為( 。
A.3+$\sqrt{2}$B.2+$\sqrt{3}$C.2+$\sqrt{2}$D.3+$\sqrt{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案