18.已知直線y=kx+3與圓x2+y2-6x-4y+5=0相交于M,N兩點(diǎn),若|MN|=2$\sqrt{3}$,則k的值是(  )
A.2或-$\frac{1}{2}$B.-2或-$\frac{1}{2}$C.-2或$\frac{1}{2}$D.2或$\frac{1}{2}$

分析 把圓的方程化為標(biāo)準(zhǔn)形式,求出弦心距,再利用弦長公式求得k的值.

解答 解:圓x2+y2-6x-4y+5=0 即 (x-3)2+(y-2)2=8,當(dāng)|MN|=2$\sqrt{3}$時(shí),
圓心(3,2)到直線y=kx+3的距離為d=$\sqrt{8-3}$=$\sqrt{5}$
∵d=$\frac{|3k-2+3|}{\sqrt{{k}^{2}+1}}$,
∴$\frac{|3k-2+3|}{\sqrt{{k}^{2}+1}}$=$\sqrt{5}$,
求得k=-2或$\frac{1}{2}$,
故選:C.

點(diǎn)評 本題主要考查圓的標(biāo)準(zhǔn)方程,直線和圓相交的性質(zhì),點(diǎn)到直線的距離公式,弦長公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知冪函數(shù)f(x)=x${\;}^{{m}^{2}-m-3}$(其中m∈N*且m≥2)為奇函數(shù),且在(0,+∞)上是單調(diào)減函數(shù).
(1)求函數(shù)f(x);
(2)比較f(-2013)與f(-2014)的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在長方體ABCD-A1B1C1D1中,∠BAB1=30°,AA1=1,則點(diǎn)A到平面BCC1B1的距離為( 。
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知圓C1的方程為x2+y2-4x+2my+2m2-2m+1=0.
(1)求當(dāng)圓的面積最大時(shí)圓C1的標(biāo)準(zhǔn)方程;
(2)求(1)中求得的圓C1關(guān)于直線l:x-y+1=0對稱的圓C2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.過直線l:2x+y-2=0上任意一點(diǎn)P做圓C:x2+y2+2x=0的切線,切點(diǎn)為A,則切線|PA|的最小值為$\frac{\sqrt{55}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某中學(xué)高一年級進(jìn)行學(xué)生性別與科目偏向問卷調(diào)查,共收回56份問卷,下面是2×2列聯(lián)表:
男生女生合計(jì)
偏理科281644
偏文科4812
合計(jì)322456
(1)有多大把握認(rèn)為科目偏向與性別有關(guān)?
(2)如果按分層抽樣的方法選取14人,又在這14人中選取2人進(jìn)行面對面交流,求選中的2人恰好都偏文科的概率;
(3)在(2)的條件下,求一次選出的2人中男生人數(shù)X的分布列及期望.
附:K2=$\frac{{n{{({ad-bc})}^2}}}{{({a+b})({a+d})({a+c})({b+d})}}$
P(K2>k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.將10個(gè)三好學(xué)生的名額全部分配給高二段編號為1、2、3的三個(gè)班級,則每個(gè)班級分到的名額數(shù)不小于班級編號分法有15種.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,△ABC內(nèi)接于圓O,AB=AC,AD⊥AB,AD交BC于點(diǎn)E,點(diǎn)F在DA的延長線上,AF=AE.求證:
(1)BF是圓O的切線;
(2)BE2=AE•DF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.(1)某校共有學(xué)生2000名,各年級男、女生人數(shù)如表.已知在全校學(xué)生中隨機(jī)抽取1名,抽到二年級女生的概率是0.18,現(xiàn)用分層抽樣的方法在全校100名學(xué)生,求應(yīng)在三年級抽取的學(xué)生人數(shù);
一年級二年級三年級
女生373xy
男生377370z
(2)甲乙兩個(gè)班級進(jìn)行一門課程的考試,按照學(xué)生考試成績優(yōu)秀和不優(yōu)秀統(tǒng)計(jì)成績后,得到如下的列聯(lián)表:
班級與成績列聯(lián)表
優(yōu)秀不優(yōu)秀
甲班1030
乙班1228
根據(jù)列聯(lián)表的獨(dú)立性檢驗(yàn),能否在犯錯誤的概率不超過0.1的前提下認(rèn)為成績與班級有關(guān)系?
P(K2≥k00.500.400.250.150.100.050.0250.0100.0050.001
k00.4550.7081.3232,0722.7063.8415.0246.6357.87910.828
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(a+d)(a+c)(b+d)}$.

查看答案和解析>>

同步練習(xí)冊答案