【題目】已知⊙的半徑為,圓心的坐標(biāo)為,其中為該圓的兩條切線,為坐標(biāo)原點(diǎn),為切點(diǎn),在第一象限,在第四象限.

)若時(shí),求切線,的斜率.

)若時(shí),求外接圓的標(biāo)準(zhǔn)方程.

)當(dāng)點(diǎn)在軸上運(yùn)動(dòng)時(shí),將表示成的函數(shù),并求函數(shù)的最小值.

【答案】(1)斜率為

(2).

(3).

【解析】分析:(1)設(shè)出切線方程,根據(jù)圓心到切線的距離等于半徑可得斜率.(2)由題意外接圓的圓心在軸上,設(shè)為結(jié)合平面幾何的有關(guān)知識(shí)可得圓心為,半徑為進(jìn)而可得圓的方程.(3)結(jié)合(2)中的結(jié)論可得點(diǎn)的坐標(biāo),進(jìn)而得向量的坐標(biāo),然后根據(jù)數(shù)量積的結(jié)果和函數(shù)的單調(diào)性可得所求

詳解:(當(dāng)時(shí),圓的方程為

由題意得過(guò)點(diǎn)的圓的切線的斜率存在,設(shè)其方程為,

由直線和圓相切得

解得

所以斜率為,

)由題意外接圓的圓心在軸上,設(shè)為

由平面幾何知識(shí)得,

可得,

,

解得

所以外接圓圓心為,半徑為

所以圓

)由()知,

可得,

所以,,

所以

所以,

易得函數(shù)在區(qū)間上單調(diào)遞減,

所以當(dāng)時(shí),取得最小值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,橢圓C: 經(jīng)過(guò)點(diǎn)P(1, ),離心率e= ,直線l的方程為x=4.

(1)求橢圓C的方程;
(2)AB是經(jīng)過(guò)右焦點(diǎn)F的任一弦(不經(jīng)過(guò)點(diǎn)P),設(shè)直線AB與直線l相交于點(diǎn)M,記PA,PB,PM的斜率分別為k1 , k2 , k3 . 問(wèn):是否存在常數(shù)λ,使得k1+k2=λk3?若存在,求λ的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有一個(gè)水平放置的透明無(wú)蓋的正方體容器,容器高8cm,將一個(gè)球放在容器口,再向容器注水,當(dāng)球面恰好接觸水面時(shí)測(cè)得水深為6cm,如不計(jì)容器的厚度,則球的體積為( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓M:(x+1)2+y2=1,圓N:(x﹣1)2+y2=9,動(dòng)圓P與圓M外切并與圓N內(nèi)切,圓心P的軌跡為曲線C.
(1)求C的方程;
(2)l是與圓P,圓M都相切的一條直線,l與曲線C交于A,B兩點(diǎn),當(dāng)圓P的半徑最長(zhǎng)時(shí),求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的幾何體中,四邊形是正方形, 平面, 分別為的中點(diǎn),且.

(1)求證:平面平面;

(2)求證:平面P;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】釣魚(yú)島事件以來(lái),中日關(guān)系日趨緊張并不斷升級(jí).為了積極響應(yīng)保釣行動(dòng),某學(xué)校舉辦了一場(chǎng)保釣知識(shí)大賽,共分兩組.其中甲組得滿分的有1個(gè)女生和3個(gè)男生,乙組得滿分的有2個(gè)女生和4個(gè)男生.現(xiàn)從得滿分的同學(xué)中,每組各任選1個(gè)同學(xué),作為保釣行動(dòng)代言人”.

(1)求選出的2個(gè)同學(xué)中恰有1個(gè)女生的概率;

(2)設(shè)X為選出的2個(gè)同學(xué)中女生的個(gè)數(shù),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了檢驗(yàn)設(shè)備M與設(shè)備N的生產(chǎn)效率,研究人員作出統(tǒng)計(jì),得到如下表所示的結(jié)果,則

設(shè)備M

設(shè)備N

生產(chǎn)出的合格產(chǎn)品

48

43

生產(chǎn)出的不合格產(chǎn)品

2

7

附:

P(K2k0)

0.15

0.10

0.050

0.025

0.010

k0

2.072

2.706

3.841

5.024

6.635

參考公式:,其中.

A. 有90%的把握認(rèn)為生產(chǎn)的產(chǎn)品質(zhì)量與設(shè)備的選擇有關(guān)

B. 沒(méi)有90%的把握認(rèn)為生產(chǎn)的產(chǎn)品質(zhì)量與設(shè)備的選擇有關(guān)

C. 可以在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為生產(chǎn)的產(chǎn)品質(zhì)量與設(shè)備的選擇有關(guān)

D. 不能在犯錯(cuò)誤的概率不超過(guò)0.1的前提下認(rèn)為生產(chǎn)的產(chǎn)品質(zhì)量與設(shè)備的選擇有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)要完成下列3項(xiàng)抽樣調(diào)查:

①?gòu)?5種疫苗中抽取5種檢測(cè)是否合格.

②渦陽(yáng)縣某中學(xué)共有480名教職工,其中一線教師360名,行政人員48名,后勤人員72名.為了解教職工對(duì)學(xué)校校務(wù)公開(kāi)方面的意見(jiàn),擬抽取一個(gè)容量為20的樣本.

③渦陽(yáng)縣某中學(xué)報(bào)告廳有28排,每排有35個(gè)座位,一次報(bào)告會(huì)恰好坐滿了聽(tīng)眾,報(bào)告會(huì)結(jié)束后,為了聽(tīng)取意見(jiàn),需要請(qǐng)28名聽(tīng)眾進(jìn)行座談.

較為合理的抽樣方法是( )

A. ①簡(jiǎn)單隨機(jī)抽樣, ②系統(tǒng)抽樣, ③分層抽樣

B. ①簡(jiǎn)單隨機(jī)抽樣, ②分層抽樣, ③系統(tǒng)抽樣

C. ①系統(tǒng)抽樣, ②簡(jiǎn)單隨機(jī)抽樣, ③分層抽樣

D. ①分層抽樣, ②系統(tǒng)抽樣, ③簡(jiǎn)單隨機(jī)抽樣

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)有 (n≥2,n∈N*)個(gè)給定的不同的數(shù)隨機(jī)排成一個(gè)下圖所示的三角形數(shù)陣:
設(shè)Mk是第k行中的最大數(shù),其中1≤k≤n,k∈N*.記M1<M2<…<Mn的概率為pn
(1)求p2的值;
(2)證明:pn

查看答案和解析>>

同步練習(xí)冊(cè)答案