已知數(shù)列的前項和為,且=,數(shù)列中,,點在直線上.
(1)求數(shù)列的通項和;
(2) 設(shè),求數(shù)列的前n項和.
(1),;(2)
解析試題分析:(1)先由第n項與前n項關(guān)系,求出數(shù)列{}的遞推關(guān)系,再由等比數(shù)列的定義判定數(shù)列{}是等比數(shù)列,用等比數(shù)列的通項公式,求出數(shù)列{}的通項公式,由點在直線上得,=2,根據(jù)等差數(shù)列定義知數(shù)列{}是等差數(shù)列,所以再根據(jù)等比數(shù)列的通項公式,求出的通項公式;(2)由(1)知是等差數(shù)列與等比數(shù)列對應(yīng)項乘積構(gòu)成的新數(shù)列,其求和用錯位相減法.
試題解析:(1)
2分
.
3分
7分
(2)
9分
因此: 10分
即:
考點:數(shù)列第n項與前n項和的關(guān)系;等差數(shù)列定義與通項公式;等比數(shù)列定義與通項公式;錯位相減法;轉(zhuǎn)化思想;運算求解能力.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知:等差數(shù)列{}中,=14,前10項和.
(Ⅰ)求;
(Ⅱ)將{}中的第2項,第4項,…,第項按原來的順序排成一個新數(shù)列,求此數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列滿足:,.
(1)求數(shù)列的通項公式;
(2)設(shè)等比數(shù)列的各項均為正數(shù),為其前項和,若,,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列的前n項和為,且
(1)求數(shù)列的通項公式;
(2)設(shè),求數(shù)列的前n項和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
等差數(shù)列的首項為23,公差為整數(shù),且第6項為正數(shù),從第7項起為負(fù)數(shù)。
(1)求此數(shù)列的公差d;
(2)當(dāng)前n項和是正數(shù)時,求n的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列{an}的各項均為正數(shù),前n項和為Sn,且滿足2Sn=+n-4.
(1)求證{an}為等差數(shù)列;
(2)求{an}的通項公式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com