10.已知函數(shù)y=$\frac{1}{3}$x3-x+c的圖象與x軸恰有兩個公共點,則c=(  )
A.$±\frac{2}{3}$B.$\frac{4}{3}$或$\frac{2}{3}$C.-1或1D.$-\frac{4}{3}$或$-\frac{2}{3}$

分析 求導函數(shù),確定函數(shù)的單調性,確定函數(shù)的極值點,利用函數(shù)y=x3-3x+c的圖象與x軸恰有兩個公共點,可得極大值等于0或極小值等于0,由此可求c的值.

解答 解:求導函數(shù)可得y′=x2-1=(x+1)(x-1),
令y′>0,可得x>1,或x<-1;令y′<0,可得-1<x<1;
∴函數(shù)在(-∞,-1),(1,+∞)上單調增,(-1,1)上單調減,
∴函數(shù)在x=-1處取得極大值,在x=1處取得極小值,
∵函數(shù)y=$\frac{1}{3}$x3-x+c的圖象與x軸恰有兩個公共點,
∴極大值f(-1)等于0或極小值f(-1)等于0,
∴$\frac{2}{3}$+c=0或-$\frac{2}{3}$+c=0,∴c=±$\frac{2}{3}$,
故選:A.

點評 本題考查導數(shù)知識的運用,考查函數(shù)的單調性與極值,解題的關鍵是利用極大值等于0或極小值等于0,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

9.若實數(shù)x、y滿足不等式組$\left\{\begin{array}{l}{x-y+2≥0}\\{x+2y-4≥0}\\{2x+y-5≤0}\end{array}\right.$,且3(x-a)+2(y+1)的最大值為5,則a=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,其左、右焦點分別為F1,F(xiàn)2,左、右頂點分別為A1,A2,上、下頂點分別為B1,B2,四邊形A1B1A2B2面積和為4.
(1)求橢圓C的方程;
(2)直線l:y=kx+m與橢圓C交于M,N兩點,OM⊥ON(其中O為坐標原點),求直線l被以線段F1,F(xiàn)2為直徑的圓截得的弦長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.為了調查喜歡旅游是否與性別有關,調查人員就“是否喜歡旅游”這個問題,在火車站分別隨機調研了50名女性和50名男性,根據(jù)調研結果得到如圖所示的等高條形圖
(Ⅰ)完成下列2×2列聯(lián)表:
 喜歡旅游不喜歡旅游合計
女性   
男性   
合計   
(2)能否在犯錯率不超過0.025的前提下認為“喜歡旅游與性別有關”
附:
 P(K2≥k0 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k0 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.命題“?x≠0,x2>0”的否定是(  )
A.?x≠0,x2≤0B.?x=0,x2≤0C.?x0≠0,${x_0}^2≤0$D.?x0=0,${x_0}^2≤0$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的右焦點為F(1,0),點P是橢圓C上一動點,若動點P到點的距離的最大值為b2
(1)求橢圓C的方程,并寫出其參數(shù)方程;
(2)求動點P到直線l:x+2y-9=0的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.設{an}(n∈N*)是各項為正數(shù)的等比數(shù)列,q是其公比,Tn是其前n項的積,且T5<T6,T6=T7>T8,則下列結論錯誤的是( 。
A.0<q<1B.a7=1
C.T6與T7均為Tn的最大值D.T9>T5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.在△ABC中,若$a=\sqrt{3}$,c=2,$cosB=\frac{1}{3}$,則△ABC的面積為(  )
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{{2\sqrt{3}}}{3}$C.$\frac{{2\sqrt{6}}}{3}$D.$\frac{{4\sqrt{6}}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.有一段演繹推理是這樣的“所有邊長都相等的多邊形為凸多邊形,菱形是所有邊長都相等的凸多邊形,所有菱形是正多邊形”結論顯然是錯誤的,是因為(  )
A.大前提錯誤B.小前提錯誤C.推理形式錯誤D.非以上錯誤

查看答案和解析>>

同步練習冊答案