5.命題“?x≠0,x2>0”的否定是(  )
A.?x≠0,x2≤0B.?x=0,x2≤0C.?x0≠0,${x_0}^2≤0$D.?x0=0,${x_0}^2≤0$

分析 運用全稱命題的否定為特稱命題,以及量詞和不等號的變化,即可得到結(jié)論.

解答 解:由全稱命題的否定為特稱命題,可得
命題“?x≠0,x2>0”的否定是“?x0≠0,${x_0}^2≤0$”.
故選:C.

點評 本題考查命題的否定,注意全稱命題的否定為特稱命題,以及量詞和不等號的變化,考查轉(zhuǎn)換能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列曲線中,在x=1處切線的傾斜角為$\frac{3π}{4}$的是( 。
A.y=x2-$\frac{3}{x}$B.y=xlnxC.y=x3-2x2D.y=ex-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知甲猜謎猜對的概率為$\frac{4}{5}$,乙猜謎猜對的概率為$\frac{2}{3}$.若甲、乙二人各猜一次謎,則恰有一人猜對的概率為$\frac{2}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.運行如圖所示程序,若輸出的實數(shù)x∈[15,17],則輸入的實數(shù)x的取值范圍是( 。
A.$[3,\frac{7}{2}]$B.$[1,\frac{5}{4}]$C.[63,71]D.[127,143]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知a>b,一元二次不等式ax2+2x+b≥0對于一切實數(shù)x恒成立,又?x0∈R,使ax02+2x0+b=0成立,則2a2+b2的最小值為( 。
A.1B.$\sqrt{2}$C.2D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)y=$\frac{1}{3}$x3-x+c的圖象與x軸恰有兩個公共點,則c=( 。
A.$±\frac{2}{3}$B.$\frac{4}{3}$或$\frac{2}{3}$C.-1或1D.$-\frac{4}{3}$或$-\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)數(shù)列{an}中a1=2,an+1=2an,Sn為數(shù)列{an}的前n項和,若Sn=126,則n=( 。
A.4B.9C.6D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=x3-3x2
(Ⅰ) 求f(x)的單調(diào)區(qū)間;
(Ⅱ) 若f(x)的定義域為[-1,m]時,值域為[-4,0],求m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.不等式$\frac{2}{x-1}$≥1的解集(1,3].

查看答案和解析>>

同步練習(xí)冊答案