8.設(shè)集合A={x|x>3},B={x|${\frac{x-1}{x-4}$≤0},則A∩B=(  )
A.[4,+∞)B.(4,+∞)C.(3,4]D.(3,4)

分析 求出B中不等式的解集確定出B,找出A與B的交集即可.

解答 解:由B中不等式變形得:(x-1)(x-4)≤0,且x-4≠0,
解得:1≤x<4,即B=[1,4),
∵A=(3,+∞),
∴A∩B=(3,4),
故選:D.

點(diǎn)評(píng) 此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知x>0,y>0,且$\frac{2}{x}$+$\frac{1}{y}$=2,若x+2y≥a恒成立,則實(shí)數(shù)a的最大值為( 。
A.4B.2C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)集合A={x|$\frac{1}{32}$≤2-x≤4},B={x|x2+2mx-3m2}(m>0).
(1)若m=2,求A∩B;
(2)若A?B,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.解答下列各題:
(1)在△ABC中,已知C=45°,A=60°,b=2,求此三角形最小邊的長及a與B的值;
(2)在△ABC中,已知A=30°,B=120°,b=5,求C及a與c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知向量$\overrightarrow a$=(x,x-1),$\overrightarrow b$=(1,2),且$\overrightarrow a$∥$\overrightarrow b$,則x=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.某工廠制造A種儀器45臺(tái),B種儀器55臺(tái),現(xiàn)需用薄鋼板給每臺(tái)儀器配一個(gè)外殼.已知鋼板有甲、乙兩種規(guī)格:甲種鋼板每張面積2m2,每張可做A種儀器外殼3個(gè)和B種儀器外殼5個(gè),乙種鋼板每張面積3m2,每張可做A種儀器外殼6個(gè)和B種儀器外殼6個(gè).問甲、乙兩種鋼板各用多少張才能用料最省(“用料最省”是指所用鋼板的總面積最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=$\frac{1}{2}$ax2-(2a+1)x+2lnx.
(Ⅰ)若曲線y=f(x)在x=1和x=3處的切線互相平行,求a的值;
(Ⅱ)在(Ⅰ)的條件下,討論函數(shù)y=f(x)的單調(diào)性;
(Ⅲ)設(shè)g(x)=(x2-2x)ex,若對(duì)任意x1∈(0,2),均存在x2∈(0,2),使得f(x1)<g(x2),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=-x2+2lnx
(1)求函數(shù)f(x)的最大值;
(2)若函數(shù)f(x)與g(x)=x+$\frac{a}{x}$有相同極值點(diǎn),
①求實(shí)數(shù)a的值;
②若對(duì)于?x1,x2∈[$\frac{1}{e}$,3](e為自然對(duì)數(shù)的底數(shù)),不等式$\frac{f({x}_{1})-g({x}_{2})}{k-1}$≤1恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若0<m<n,則下列結(jié)論正確的是( 。
A.2m>2nB.0.5m<0.5n
C.${log_2}^m>{log_2}^n$D.${log_{0.5}}^m>{log_{0.5}}^n$

查看答案和解析>>

同步練習(xí)冊(cè)答案