【題目】如圖,四棱錐的底面是菱形,底面,分別是的中點(diǎn),,,.
(I)證明:;
(II)求直線與平面所成角的正弦值;
(III)在邊上是否存在點(diǎn),使與所成角的余弦值為,若存在,確定點(diǎn)位置;若不存在,說明理由.
【答案】(Ⅰ)見解析; (Ⅱ); (Ⅲ)見解析.
【解析】
(Ⅰ)由題意結(jié)合幾何關(guān)系可證得平面,據(jù)此證明題中的結(jié)論即可;
(Ⅱ)建立空間直角坐標(biāo)系,求得直線的方向向量與平面的一個法向量,然后求解線面角的正弦值即可;
(Ⅲ)假設(shè)滿足題意的點(diǎn)存在,設(shè),由直線與的方向向量得到關(guān)于的方程,解方程即可確定點(diǎn)F的位置.
(Ⅰ)由菱形的性質(zhì)可得:,結(jié)合三角形中位線的性質(zhì)可知:,故,
底面,底面,故,
且,故平面,
平面,
(Ⅱ)由題意結(jié)合菱形的性質(zhì)易知,,,
以點(diǎn)O為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,
則:,
設(shè)平面的一個法向量為,
則:,
據(jù)此可得平面的一個法向量為,
而,
設(shè)直線與平面所成角為,
則.
(Ⅲ)由題意可得:,假設(shè)滿足題意的點(diǎn)存在,
設(shè),,
據(jù)此可得:,即:,
從而點(diǎn)F的坐標(biāo)為,
據(jù)此可得:,,
結(jié)合題意有:,解得:.
故點(diǎn)F為中點(diǎn)時滿足題意.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班50名學(xué)生在一次百米測試中,成績?nèi)拷橛?/span>13秒與18秒之間,將測試結(jié)果按如下方式分成五組:第一組,第二組,,第五組.下圖是按上述分組方法得到的頻率分布直方圖.按上述分組方法得到的頻率分布直方圖.
(1)若成績大于或等于14秒且小于16秒認(rèn)為良好,求該班在這次百米測試中成績良好的人數(shù);
(2)設(shè)m,n表示該班某兩位同學(xué)的百米測試成績,且已知求事件“”發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有下列幾個命題:①若,則;②“若,則互為相反數(shù)”的否命題“;③“若則”的逆命題;④“若,則互為倒數(shù)”的逆否命題. 其中真命題的序號__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:(x﹣a)2+(y﹣2)2=4(a>0)及直線l:x﹣y+3=0.當(dāng)直線l被圓C截得的弦長為時,求
(Ⅰ)a的值;
(Ⅱ)求過點(diǎn)(3,5)并與圓C相切的切線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的焦距為分別為橢圓的左、右頂點(diǎn),為橢圓上的兩點(diǎn)(異于),連結(jié),且斜率是斜率的倍.
(1)求橢圓的方程;
(2)證明:直線恒過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地統(tǒng)計(jì)局調(diào)查了10000名居民的月收入,并根據(jù)所得數(shù)據(jù)繪制了樣本的頻率分布直方圖如圖所示。
(1)求居民月收入在[3000,3500)內(nèi)的頻率;
(2)根據(jù)頻率分布直方圖求出樣本數(shù)據(jù)的中位數(shù);
(3)為了分析居民的月收入與年齡、職業(yè)等方面的關(guān)系,必須按月收入再從這10000中用分層抽樣的方法抽出100人做進(jìn)一步分析,則應(yīng)從月收入在[2500,3000)內(nèi)的居民中抽取多少人?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}中,a1=1,an+1=,(n∈N*)
(1)求數(shù)列{an}的通項(xiàng)公式an,
(2)若數(shù)列{bn}滿足bn=(3n﹣1)an,數(shù)列{bn}的前n項(xiàng)和為Tn,若不等式(﹣1)nλ<Tn對一切n∈N*恒成立,求λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知是橢圓的一個頂點(diǎn),的短軸是圓的直徑,直線,過點(diǎn)P且互相垂直,交橢圓于另一點(diǎn)D,交圓于A,B兩點(diǎn)
Ⅰ求橢圓的標(biāo)準(zhǔn)方程;
Ⅱ求面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com