【題目】已知數(shù)列{an}的前n項為和Sn , 點(n, )在直線y= x+ 上.數(shù)列{bn}滿足bn+2﹣2bn+1+bn=0(n∈N*),且b3=11,前9項和為153.
(1)求數(shù)列{an},{bn}的通項公式;
(2)求數(shù)列 的前n項和Tn
(3)設n∈N* , f(n)= 問是否存在m∈N* , 使得f(m+15)=5f(m)成立?若存在,求出m的值;若不存在,請說明理由.
【答案】
(1)解:∵點(n, )在直線y= x+ 上,
∴ = n+ ,
即Sn= n2+ n,
所以a1=6,
當n≥2時,an=Sn﹣Sn﹣1=n+5.
且a1=6也適合,
所以an=n+5
∵bn+2﹣2bn+1+bn=0(n∈N*),
∴bn+2﹣bn+1=bn+1﹣bn=…=b2﹣b1.
∴數(shù)列{bn}是等差數(shù)列,
∵b3=11,它的前9項和為153,
設公差為d,則b1+2d=11,9b1+ ×d=153,
解得b1=5,d=3.
∴bn=3n+2
(2)解:令 ,
∴ ,
,
則 ,
∴
(3)解:當n∈N*,f(n)= =
當m為奇數(shù)時,m+15為偶數(shù),則有3(m+15)+2=5(m+5),解得m=11
當m為偶數(shù)時,m+15為奇數(shù).若f(m+15)=5f(m)成立,m+15+5=5(3m+2),此時不成立
所以當m=11時,f(m+15)=5f(m)
【解析】(1)由題意可得Sn= n2+ n,解可求出通項可求an;由bn+2﹣2bn+1+bn=0bn+2﹣bn+1=bn+1﹣bn , 從而可得數(shù)列bn為等差數(shù)列,結合題中所給條件可求公差d,首項b1 , 進一步可求數(shù)列的通項.(2)由(I)可知數(shù)列 分別為等差、等比數(shù)列,對數(shù)列求和用錯位相減,(3)當n∈N* , f(n)= = ,分類討論即可求出m的值.
【考點精析】掌握數(shù)列的前n項和和數(shù)列的通項公式是解答本題的根本,需要知道數(shù)列{an}的前n項和sn與通項an的關系;如果數(shù)列an的第n項與n之間的關系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱柱ABCD﹣A1B1C1D1中,側棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E為棱AA1的中點.
(Ⅰ)證明B1C1⊥CE;
(Ⅱ)求二面角B1﹣CE﹣C1的正弦值.
(Ⅲ)設點M在線段C1E上,且直線AM與平面ADD1A1所成角的正弦值為 ,求線段AM的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(1)若函數(shù)的圖象在處的切線垂直于直線,求實數(shù)的值及直線的方程;
(2)求函數(shù)的單調區(qū)間;
(3)若,求證: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,直線的傾斜角為且經過點,以原點為極點,以軸正半軸為極軸,與直角坐標系取相同的長度單位,建立極坐標系,設曲線的極坐標方程為.
(1)若直線與曲線有公共點,求的取值范圍;
(2)設為曲線上任意一點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某機床廠今年初用98萬元購進一臺數(shù)控機床,并立即投入使用,計劃第一年維修、保養(yǎng)費用12萬元,從第二年開始,每年的維修、保養(yǎng)修費用比上一年增加4萬元,該機床使用后,每年的總收入為50萬元,設使用x年后數(shù)控機床的盈利總額y元.
(1)寫出y與x之間的函數(shù)關系式;
(2)從第幾年開始,該機床開始盈利?
(3)使用若干年后,對機床的處理有兩種方案:①當年平均盈利額達到最大值時,以30萬元價格處理該機床;②當盈利額達到最大值時,以12萬元價格處理該機床.問哪種方案處理較為合理?請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,有下列4個命題:
①若,則的圖象關于直線對稱;
②與的圖象關于直線對稱;
③若為偶函數(shù),且,則的圖象關于直線對稱;
④若為奇函數(shù),且,則的圖象關于直線對稱.
其中正確的命題為 .(填序號)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn,對任意的正整數(shù)n,都有Sn=an+n﹣3成立.
(Ⅰ)求證:{an﹣1}為等比數(shù)列;
(Ⅱ)求數(shù)列{nan}的前n項和Tn.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某班20名同學某次數(shù)學測試的成績可繪制成如下莖葉圖,由于其中部分數(shù)據缺失,故打算根據莖葉圖中的數(shù)據估計全班同學的平均成績.
(1)完成頻率分布直方圖;
(2)根據(1)中的頻率分布直方圖估計全班同學的平均成績 (同一組中的數(shù)據用該組區(qū)間的中點值作代表);
(3)設根據莖葉圖計算出的全班的平均成績?yōu)?/span>,并假設,且各自取得每一個可能值的機會相等,在(2)的條件下,求概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】北京市的士收費辦法如下:不超過2公里收7元(即起步價7元),超過2公里的里程每公里收2.6元,另每車次超過2公里收燃油附加費1元(不考慮其他因素).相應收費系統(tǒng)的流程圖如圖所示,則①處應填( )
A.y=7+2.6x
B.y=8+2.6x
C.y=7+2.6(x﹣2)
D.y=8+2.6(x﹣2)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com