【題目】某班20名同學(xué)某次數(shù)學(xué)測(cè)試的成績(jī)可繪制成如下莖葉圖,由于其中部分?jǐn)?shù)據(jù)缺失,故打算根據(jù)莖葉圖中的數(shù)據(jù)估計(jì)全班同學(xué)的平均成績(jī).
(1)完成頻率分布直方圖;
(2)根據(jù)(1)中的頻率分布直方圖估計(jì)全班同學(xué)的平均成績(jī) (同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(3)設(shè)根據(jù)莖葉圖計(jì)算出的全班的平均成績(jī)?yōu)?/span>,并假設(shè),且各自取得每一個(gè)可能值的機(jī)會(huì)相等,在(2)的條件下,求概率.
【答案】(1)見解析 ;(2) 78分;(3).
【解析】試題分析:(1)結(jié)合莖葉圖,頻率等于,求出畫出頻率分布直方圖即可;(2)根據(jù)頻率分布直方圖,求出平均數(shù) 即可;(3)根據(jù)莖葉圖計(jì)算出的全班的平均成績(jī)?yōu)?/span>y,得到關(guān)于a與b的不等式,因?yàn)?/span>,利用古典概型求出概率.
試題解析:
(1)頻率分布直方圖如下:
(2) ,
即全班同學(xué)平均成績(jī)可估計(jì)為78分.
(3) ,
故,因?yàn)?/span>
共有36種情況,符合的有(2,2)(2,3)(3,2)三種情況,故.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直三棱柱A1B1C1﹣ABC中, ,AB=AC=AA1=1,已知G和E分別為A1B1和CC1的中點(diǎn),D與F分別為線段AC和AB上的動(dòng)點(diǎn)(不包括端點(diǎn)),若GD⊥EF,則線段DF的長(zhǎng)度的取值范圍為( )
A.[ ,1)
B.[ ,1]
C.( ,1)
D.[ ,1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)為和Sn , 點(diǎn)(n, )在直線y= x+ 上.?dāng)?shù)列{bn}滿足bn+2﹣2bn+1+bn=0(n∈N*),且b3=11,前9項(xiàng)和為153.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)求數(shù)列 的前n項(xiàng)和Tn
(3)設(shè)n∈N* , f(n)= 問是否存在m∈N* , 使得f(m+15)=5f(m)成立?若存在,求出m的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) ,.
(Ⅰ)當(dāng) 時(shí),求函數(shù) 的最小值; (Ⅱ)當(dāng) 時(shí),討論函數(shù) 的單調(diào)性;
(Ⅲ)是否存在實(shí)數(shù),對(duì)任意的 ,且,有,恒成立,若存在求出的取值范圍,若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某次乒乓球比賽的決賽在甲乙兩名選手之間舉行,比賽采用五局三勝制,按以往比賽經(jīng)驗(yàn),甲勝乙的概率為.
(Ⅰ)求比賽三局甲獲勝的概率;
(Ⅱ)求甲獲勝的概率;
(Ⅲ)設(shè)甲比賽的次數(shù)為,求的數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知△ABC的面積為 .
(1)求sinBsinC;
(2)若6cosBcosC=1,a=3,求△ABC的周長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}的首項(xiàng)a1=1,前n項(xiàng)和Sn滿足關(guān)系式:3tSn﹣(2t+3)Sn﹣1=3t(t>0,n=2,3,4…)
(1)求證:數(shù)列{an}是等比數(shù)列;
(2)設(shè)數(shù)列{an}的公比為f(t),作數(shù)列{bn},使 ,求數(shù)列{bn}的通項(xiàng)bn;
(3)求和:b1b2﹣b2b3+b3b4﹣b4b5+…+b2n﹣1b2n﹣b2nb2n+1 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)曲線y=xn+1(n∈N*)在點(diǎn)(1,1)處的切線與x軸的交點(diǎn)的橫坐標(biāo)為xn , 則log2017x1+log2017x2+…+log2017x2016的值為( )
A.﹣log20172016
B.﹣1
C.log20172016﹣1
D.1
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com