9.《張丘建算經(jīng)》是我國南北朝時期的一部重要數(shù)學(xué)著作,書中系統(tǒng)的介紹了等差數(shù)列,同類結(jié)果在三百多年后的印度才首次出現(xiàn).書中有這樣一個問題,大意為:某女子善于織布,后一天比前一天織的快,而且每天增加的數(shù)量相同,已知第一天織布5尺,一個月(按30天計算)總共織布390尺,問每天增加的數(shù)量為多少尺?該問題的答案為( 。
A.$\frac{8}{29}$尺B.$\frac{16}{29}$尺C.$\frac{32}{29}$尺D.$\frac{1}{2}$尺

分析 由題意,該女子從第一天起,每天所織的布的長度成等差數(shù)列,其公差為d,由等差數(shù)列的前n項和公式能求出公差.

解答 解:由題意,該女子從第一天起,每天所織的布的長度成等差數(shù)列,
記為:a1,a2,a3,…,an,
其公差為d,
則a1=5,S30=390,
∴$30{a}_{1}+\frac{30×29}{2}d$=390,
∴d=$\frac{16}{29}$.
故選:B.

點評 本題查等差數(shù)列的公差的求法,是基礎(chǔ)題,解題時要認真審題,注意等差數(shù)列的性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.用秦九韶算法計算多項式f(x)=12+35x-8x2+6x4+5x5+3x6在X=-4時的值時,V3的值為(  )
A.-144B.-136C.-57D.34

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知a=${(\frac{2}{5})^{\frac{2}{5}}}$,b=${(\frac{3}{5})^{\frac{2}{5}}}$,c=${log_{\frac{3}{5}}}\frac{2}{5}$,則a、b、c大小關(guān)系是( 。
A.a<c<bB.b<a<cC.c<a<bD.a<b<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)數(shù)列{an}的前n項和為Sn,已知a1=1,Sn+1=2Sn+n+1(n∈N*
(1)求數(shù)列{an}的通項公式;
(2)若bn=$\frac{{a}_{n}+1}{{a}_{n}•{a}_{n+1}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.方程4x+2x=a2+a有正根,則實數(shù)a的取值范圍是(-∞,-2)∪(1,+∞);若函數(shù)f(x)=ln(x2+ax+1)的值域為R,則實數(shù)a的取值范圍是(-∞,-2]∪[2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù)f(x)與函數(shù)g(x)分別是定義在R上的偶函數(shù)和奇函數(shù),且f(x)+g(x)=x3+x2+1,則f(1)-g(1)=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知集合E={x||x-1|≥m},F(xiàn)=$\{x|\frac{10}{x+6}>1\}$.
(1)若m=3,求E∩F;
(2)若E∩F=∅,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.學(xué)習(xí)雷鋒精神前半年內(nèi)某單位餐廳的固定餐椅經(jīng)常有損壞,學(xué)習(xí)雷鋒精神時全修好;單位對學(xué)習(xí)雷鋒精神前后各半年內(nèi)餐椅的損壞情況作了一個大致統(tǒng)計,具體數(shù)據(jù)如表:
損壞餐椅數(shù)未損壞餐椅數(shù)總 計
學(xué)習(xí)雷鋒精神前50150200
學(xué)習(xí)雷鋒精神后30170200
總  計80320400
則有97.5%以上的把握認為損毀餐椅數(shù)量與學(xué)習(xí)雷鋒精神有關(guān)?
參考數(shù)據(jù):
P(K2≥k00.050.0250.0100.0050.001
k03.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列各組對象能構(gòu)成集合的有(  ) 
①美麗的小鳥;
②不超過10的非負整數(shù);
③立方接近零的正數(shù);
④高一年級視力比較好的同學(xué).
A.1個B.2個C.3個D.4個

查看答案和解析>>

同步練習(xí)冊答案