20.已知圓x2+y2=r2(r>0)的內(nèi)接四邊形的面積的最大值為2r2,類比可得橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的內(nèi)接四邊形的面積的最大值為2ab.

分析 將圓的方程轉(zhuǎn)化為$\frac{{x}^{2}}{{r}^{2}}$+$\frac{{y}^{2}}{{r}^{2}}$=1,類比猜測橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的內(nèi)接四邊形的面積的最大值即可.

解答 解:將圓的方程轉(zhuǎn)化為$\frac{{x}^{2}}{{r}^{2}}$+$\frac{{y}^{2}}{{r}^{2}}$=1,
圓x2+y2=r2(r>0)的內(nèi)接四邊形的面積的最大值為2r2,
類比可得橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的內(nèi)接四邊形的面積的最大值為2ab,
故答案為:2ab.

點評 本題考查直線和圓錐曲線的綜合運用,解題時要認真審題,注意挖掘題設(shè)中的隱含條件,合理地進行類比猜想.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

2.下列有關(guān)結(jié)論正確的個數(shù)為( 。
①小趙、小錢、小孫、小李到4個景點旅游,每人只去一個景點,設(shè)事件A=“4個人去的景點不相同”,事件B=“小趙獨自去一個景點”,則P(A|B)=$\frac{2}{9}$;
②設(shè)a,b∈R,則“l(fā)og2a>log2b”是“2a-b>1”的充分不必要條件;
③設(shè)隨機變量ξ服從正態(tài)分布N(μ,7),若P(ξ<2)=P(ξ>4),則μ與Dξ的值分別為μ=3,Dξ=7.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)f(x)=ax2+bx+c(a≠0)滿足f(0)=0,對于任意x∈R都有f(x)≥x,且$f({-\frac{1}{2}+x})=f({-\frac{1}{2}-x})$.
(I)求函數(shù)f(x)的表達式;
(II)令g(x)=f(x)-|λx-1|(λ>0),研究函數(shù)g(x)在區(qū)間(0,1)上的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.奇函數(shù)f(x)的定義域為R,函數(shù)g(x)=x2+f(x-1)+f(x+1),若g(1)=4,則g(-1)的值為-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知公差不為0的等差數(shù)列{an}前n項和為Sn,且S1,S2,S4成等比數(shù)列,則$\frac{{a}_{5}}{{a}_{1}}$=9.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知函數(shù)f(x)=Asin(ωx+φ)+B,(A>0,ω>0,|φ|<$\frac{π}{2}$,x∈R)在區(qū)間($\frac{π}{2}$,$\frac{3π}{2}$)上單調(diào),當x=$\frac{π}{2}$時,f(x)取得最大值5,當x=$\frac{3π}{2}$時,f(x)取得最小值-1,
(1)求f(x)的解析式
(2)當x∈[0,4π]時,函數(shù)g(x)=2x|f(x)|-(a+1)2x+1有8個零點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.下表是數(shù)據(jù)x,y的記錄,其中y關(guān)于x的線性回歸方程是$\widehat{y}$=0.6x+0.3,那么表中t的值是1.
 3 5
 2.54.5 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.隨著互聯(lián)網(wǎng)的發(fā)展,移動支付(又稱手機支付)越來越普遍,某學校興趣小組為了了解移動支付在大眾中的熟知度,對15~65歲的人群隨機抽樣調(diào)查,調(diào)查的問題是“你會使用移動支付嗎?”其中,回答“會”的共有n個人,把這n個人按照年齡分成5組:第1組[15,25),第2組[25,35),第3組[35,45),第4組[45,55),第5組[55,65),然后繪制成如圖所示的頻率分布直方圖,其中第一組的頻數(shù)為20.
(1)求n和x的值,并根據(jù)頻率分布直方圖估計 這組數(shù)據(jù)的眾數(shù),
(2)從第1,3,4組中用分層抽樣的方法抽取6人,求第1,3,4組抽取的人數(shù),
(3)在(2)抽取的6人中再隨機抽取2人,求所抽取的2人來自同一個組的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.若函數(shù)f(x)=2sin(ωx+φ)對任意的x∈R,都有f($\frac{π}{3}$-x)=f(x).若函數(shù)g(x)=cos(ωx+φ)-1,則g($\frac{π}{6}$)的值是( 。
A.-2B.-1C.-$\frac{1}{2}$D.0

查看答案和解析>>

同步練習冊答案