【題目】已知橢圓 的離心率為 ,且以兩焦點(diǎn)為直徑的圓的內(nèi)接正方形面積為2.
(1)求橢圓 的標(biāo)準(zhǔn)方程;
(2)若直線 與橢圓 相交于 , 兩點(diǎn),在 軸上是否存在點(diǎn) ,使直線 的斜率之和 為定值?若存在,求出點(diǎn) 坐標(biāo)及該定值,若不存在,試說明理由.

【答案】
(1)解:由已知可得 解得 , ,
故答案為:所求橢圓方程為
(2)由 ,
,解得
設(shè) ,
, ,
設(shè)存在點(diǎn) ,則 ,
所以
要使 為定值,只需 與參數(shù) 無關(guān),
,解得 ,
當(dāng) 時,
故答案為:存在點(diǎn) ,使得 為定值,且定值為0.
【解析】(1)由已知條件得到關(guān)于a,b,c的方程組求a,b,c得到橢圓方程.
(2)將直線和橢圓方程聯(lián)立成方程組,消去y,得關(guān)于x的一元二次方程,結(jié)合韋達(dá)定理將斜率和表示出來,由式子為定值求m的值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|log3x|,實(shí)數(shù)m,n滿足0<m<n,且f(m)=f(n),若f(x)在[m2 , n]上的最大值為2,則 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= ,若a,b,c互不相等,且f(a)=f(b)=f(c),則a+b+c的取值范圍是(
A.(4,2018)
B.(4,2020)
C.(3,2020)
D.(2,2020)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義一個集合A的所有子集組成的集合叫做集合A的冪集,記為P(A),用n(A)表示有限集A的元素個數(shù),給出下列命題:①對于任意集合A,都有AP(A);②存在集合A,使得n[P(A)]=3;③用表示空集,若A∩B=,則P(A)∩P(B)=;④若A B,,則P(A) P(B);⑤若n(A)-n(B)=1,則n[P(A)]=2×n[P(B)]其中正確的命題個數(shù)為( )。
A.4
B.3
C.2
D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在 上的函數(shù) ,且 恒成立.
(1)求實(shí)數(shù) 的值;
(2)若 ,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}是以a為首項(xiàng),q為公比的等比數(shù)列,數(shù)列{bn}滿足bn=1+a1+a2+…+an(n=1,2,…),數(shù)列{cn}滿足cn=2+b1+b2+…+bn(n=1,2,…).若{cn}為等比數(shù)列,則a+q=(
A.
B.3
C.
D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)= 是奇函數(shù),則使f(x)>3成立的x的取值范圍為( )
A.(-∞,-1)
B.(-1,0)
C.(0,1)
D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐 ,底面 為菱形, 平面 , 的中點(diǎn), .

(I)求證:直線 平面
(II)求直線 與平面 所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)=1+ +sin x在區(qū)間[-k,k](k>0)上的值域?yàn)閇m,n],則m+n的值是( )
A.0
B.1
C.2
D.4

查看答案和解析>>

同步練習(xí)冊答案