【題目】數(shù)列{an}是以a為首項(xiàng),q為公比的等比數(shù)列,數(shù)列{bn}滿足bn=1+a1+a2+…+an(n=1,2,…),數(shù)列{cn}滿足cn=2+b1+b2+…+bn(n=1,2,…).若{cn}為等比數(shù)列,則a+q=(
A.
B.3
C.
D.6

【答案】B
【解析】解:數(shù)列{an}是以a為首項(xiàng),q為公比的等比數(shù)列,an=aqn﹣1 , 則bn=1+a1+a2+…+an=1+ =1+ ,
則cn=2+b1+b2+…+bn=2+(1+ )n﹣ × =2﹣ + n+ ,
要使{cn}為等比數(shù)列,則 ,解得: ,
∴a+q=3,
故選B.
由題意求得數(shù)列{bn}的通項(xiàng)公式,代入即可求得數(shù)列{cn}的通項(xiàng)公式,根據(jù)等比數(shù)列通項(xiàng)公式的性質(zhì),即可求得a和q的值,求得a+q的值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“拋物線 的準(zhǔn)線方程為 ”是“拋物線 的焦點(diǎn)與雙曲線 的焦點(diǎn)重合”的( )
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知x,y∈R,且 ,則存在θ∈R,使得xcosθ+ysinθ+1=0成立的P(x,y)構(gòu)成的區(qū)域面積為(
A.4
B.4
C.
D. +

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知?jiǎng)訄A 經(jīng)過(guò)點(diǎn) ,并且與圓 相切.
(1)求點(diǎn)P的軌跡C的方程;
(2)設(shè) 為軌跡C內(nèi)的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn) 且斜率為 的直線 交軌跡C于A,B兩點(diǎn),當(dāng)k為何值時(shí)? 是與m無(wú)關(guān)的定值,并求出該值定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的離心率為 ,且以兩焦點(diǎn)為直徑的圓的內(nèi)接正方形面積為2.
(1)求橢圓 的標(biāo)準(zhǔn)方程;
(2)若直線 與橢圓 相交于 , 兩點(diǎn),在 軸上是否存在點(diǎn) ,使直線 的斜率之和 為定值?若存在,求出點(diǎn) 坐標(biāo)及該定值,若不存在,試說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知偶函數(shù)f(x)在區(qū)間(-∞,0]上單調(diào)遞減,則滿足f(2x-1)< 的x的取值范圍是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=a·2x+b·3x , 其中常數(shù)a,b滿足ab≠0.
(1)若ab>0,判斷函數(shù)f(x)的單調(diào)性;
(2)若ab<0,求f(x+1)>f(x)時(shí)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知P為△ABC內(nèi)一點(diǎn),且滿足 ,記△ABP,△BCP,△ACP的面積依次為S1 , S2 , S3 , 則S1:S2:S3等于(
A.1:2:3
B.1:4:9
C.2:3:1
D.3:1:2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知 ,直線 的斜率之積為 .
(Ⅰ)求頂點(diǎn) 的軌跡方程 ;
(Ⅱ)設(shè)動(dòng)直線 ,點(diǎn) 關(guān)于直線 的對(duì)稱點(diǎn)為 ,且 點(diǎn)在曲線 上,求 的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案