【題目】定義一個集合A的所有子集組成的集合叫做集合A的冪集,記為P(A),用n(A)表示有限集A的元素個數(shù),給出下列命題:①對于任意集合A,都有AP(A);②存在集合A,使得n[P(A)]=3;③用表示空集,若A∩B=,則P(A)∩P(B)=;④若A B,,則P(A) P(B);⑤若n(A)-n(B)=1,則n[P(A)]=2×n[P(B)]其中正確的命題個數(shù)為( )。
A.4
B.3
C.2
D.1

【答案】B
【解析】由 的定義可知①正確,④正確,設(shè) ,則 ,所以②錯誤;若 ,則 ,③不正確; ,即 中元素比 中元素多一個,則 ,⑤正確。
故答案為:B.

先要明確新定義“冪集”的含義,對各個說法逐個判斷,得到正確的個數(shù)。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若直角坐標(biāo)平面內(nèi)的兩個不同點 、 滿足條件:① 、 都在函數(shù) 的圖像上;② 、 關(guān)于原點對稱,則稱點對 是函數(shù) 的一對“友好點對”(注:點對 看作同一對“友好點對”).已知函數(shù) ,則此函數(shù)的“友好點對”有( )對.
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓錐曲線 ( 是參數(shù))和定點 , 是圓錐曲線的左、右焦點.
(1)求經(jīng)過點 且垂直于直線 的直線 的參數(shù)方程;
(2)以坐標(biāo)原點為極點, 軸的正半軸為極軸建立極坐標(biāo)系,求直線 的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知x,y∈R,且 ,則存在θ∈R,使得xcosθ+ysinθ+1=0成立的P(x,y)構(gòu)成的區(qū)域面積為(
A.4
B.4
C.
D. +

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系下,知圓O:ρ=cosθ+sinθ和直線
(1)求圓O與直線l的直角坐標(biāo)方程;
(2)當(dāng)θ∈(0,π)時,求圓O和直線l的公共點的極坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知動圓 經(jīng)過點 ,并且與圓 相切.
(1)求點P的軌跡C的方程;
(2)設(shè) 為軌跡C內(nèi)的一個動點,過點 且斜率為 的直線 交軌跡C于A,B兩點,當(dāng)k為何值時? 是與m無關(guān)的定值,并求出該值定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的離心率為 ,且以兩焦點為直徑的圓的內(nèi)接正方形面積為2.
(1)求橢圓 的標(biāo)準(zhǔn)方程;
(2)若直線 與橢圓 相交于 , 兩點,在 軸上是否存在點 ,使直線 的斜率之和 為定值?若存在,求出點 坐標(biāo)及該定值,若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=a·2x+b·3x , 其中常數(shù)a,b滿足ab≠0.
(1)若ab>0,判斷函數(shù)f(x)的單調(diào)性;
(2)若ab<0,求f(x+1)>f(x)時x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若對圓 上任意一點 , 的取值與 無關(guān),則實數(shù) 的取值范圍是( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案