已知一組數(shù)據(jù)為0,3,5,x,9,13,且這組數(shù)據(jù)的中位數(shù)為7,那么這組數(shù)據(jù)的眾數(shù)為( 。
A、13B、9C、7D、0
考點:眾數(shù)、中位數(shù)、平均數(shù)
專題:概率與統(tǒng)計
分析:根據(jù)中位數(shù)的定義求出x的值,從而求出眾數(shù).
解答: 解:由題意得:
5+x
2
=7,解得:x=9,
∴這組數(shù)據(jù)的眾數(shù)是9,
故選:B.
點評:本題考查了眾數(shù),中位數(shù)問題,是一道基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)為偶函數(shù),且當x≥0時,f(x)=(
1
4
x,又函數(shù)g(x)=|xsinπx|,則函數(shù)h(x)=f(x)-g(x)在[-
1
2
,2]上的零點的個數(shù)為(  )個.
A、3B、4C、5D、6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知關(guān)于x,y的方程C:x2+y2-2x-4y+m=0,直線l:x+2y-4=0.
(Ⅰ)當方程C表示圓時,求m的取值范圍;
(Ⅱ)若直線l被圓C截得的弦長為
4
5
5
時,求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

以(2,0)為圓心,經(jīng)過原點的圓方程為( 。
A、(x+2)2+y2=4
B、(x-2)2+y2=4
C、(x+2)2+y2=2
D、(x-2)2+y2=2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,OA為圓C的直徑,有向線段OB與圓C交于點P,且
OB
=
3
OP
,若|
OP
|=1,則
OA
OB
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知變量x,y滿足約束條件
x+2y≥2
2x+y≤4
4x-y≥-1
,則目標函數(shù)z=y-3x的取值范圍是( 。
A、[-6,
3
2
]
B、[1,
3
2
]
C、[-6,1]
D、[-
3
2
,6]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)p:實數(shù)x滿足x2-4ax+3a2<0,q:實數(shù)x滿足|x-3|<1.
(1)若a=1,且p∪q為真,p∩q為假,求實數(shù)x的取值范圍;
(2)若a>0,且p是q的必要不充分條件,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=sinx+
3
cosx,x∈R,則f(x)的最小正周期為( 。
A、
π
2
B、π
C、2π
D、3π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知偶函數(shù)f(x)在[0,+∞)單調(diào)遞增,若f(lnx)+f(ln
1
x
)<2f(1),則x的取值范圍是
 

查看答案和解析>>

同步練習冊答案