2.已知α-l-β為60°,β內(nèi)一點P在α內(nèi)的射影為P′,若|PP′|=2,則P′到β的距離是(  )
A.2B.$\sqrt{3}$C.1D.$\frac{\sqrt{3}}{2}$

分析 作PC⊥l,連接P′C,則P′C⊥l,∠PCP′=60°,作P′A⊥PC,垂足為A,則P′A⊥β,即可求出P′到β的距離.

解答 解:如圖,作PC⊥l,連接P′C,則P′C⊥l,∠PCP′=60°,
作P′A⊥PC,垂足為A,則P′A⊥β,
∵|PP′|=2,
∴P′到β的距離是2×sin30°=1
故選:C.

點評 本題考查與二面角有關(guān)的立體幾何綜合題,正確找出二面角的平面角是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知拋物線C:y2=2px(p>0)上的一點M(2,y0)到焦點F的距離等于3.
(1)求拋物線C的方程;
(2)若過點D(3,0)的直線l與拋物線C相交于A,B兩點,求△ABF面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,△ABC是邊長為4的等邊三角形,△ABD是等腰直角三角形,AD⊥BD,平面ABC⊥平面ABD,且EC⊥平面ABC,EC=2.
(1)求證:AD⊥BE
(2)求平面AEC和平面BDE所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,三棱柱ABC-A1B1C1中,CC1⊥平面ABC,AC=BC=$\frac{1}{2}A{A_1}$,D是棱AA1的中點,DC1⊥BD.
(Ⅰ)證明:DC1⊥BC;
(Ⅱ)設(shè)AA1=2,A1B1的中點為P,求點P到平面BDC1的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,在直三棱柱ABC-A1B1C1中,平面A1BC⊥側(cè)面A1ABB1,且AA1=AB=2
(1)求證:AB⊥BC;
(2)若AC=2$\sqrt{2}$,求銳二面角A-A1C-B的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,四棱錐P-ABCD的底面是正方形,PA⊥底面ABCD,PA=AD,點M是PD的中點,作ME⊥PC,交PC于點E.
(1)求證:PB∥平面MAC;
(2)求證:PC⊥平面AEM;
(3)求二面角A-PC-D的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知底面為邊長為2的正方形,側(cè)棱長為1的直四棱柱ABCD-A1B1C1D1中,P是面A1B1C1D1上的動點.給出以下四個結(jié)論中,正確的個數(shù)是( 。
①與點D距離為$\sqrt{3}$的點P形成一條曲線,則該曲線的長度是$\frac{π}{2}$;
②若DP∥面ACB1,則DP與面ACC1A1所成角的正切值取值范圍是$[{\frac{{\sqrt{6}}}{3},+∞})$;
③若$DP=\sqrt{3}$,則DP在該四棱柱六個面上的正投影長度之和的最大值為$6\sqrt{2}$.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.長方體ABCD-A1B1C1D1中,AB=3,AD=9,AA1=5,一條繩子沿著長方體的表面從點A拉到點C1,求繩子的最短長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.一個幾何體的三視圖如圖所示,則該幾何體的體積為(  )
A.4B.5C.$\frac{11}{2}$D.6

查看答案和解析>>

同步練習(xí)冊答案