【題目】關(guān)于函數(shù)的對(duì)稱性有如下結(jié)論:對(duì)于給定的函數(shù),如果對(duì)于任意的都有成立為常數(shù)),則函數(shù)關(guān)于點(diǎn)對(duì)稱.
(1)用題設(shè)中的結(jié)論證明:函數(shù)關(guān)于點(diǎn);
(2)若函數(shù)既關(guān)于點(diǎn)對(duì)稱,又關(guān)于點(diǎn)對(duì)稱,且當(dāng)時(shí),,求:①的值;
②當(dāng)時(shí),的表達(dá)式.
【答案】(1)證明見解析;(2)①;②.
【解析】
(1)根據(jù)題設(shè)中的結(jié)論證明即可;
(2)由題意可得,①代值計(jì)算即可;②由,然后代值計(jì)算即可.
(1)f(x)=的定義域?yàn)?/span>{x|x≠3},對(duì)任意x≠3有f(3﹣x)+f(3﹣x)=(﹣2﹣)+(﹣2﹣)=﹣4,
∴函數(shù)f(x)=關(guān)于點(diǎn)(3,﹣2)對(duì)稱;
(2)函數(shù)f(x)關(guān)于點(diǎn)(2,0)對(duì)稱,
∴f(2+x)+f(2﹣x)=0,
即f(x)+f(4﹣x)=0,
又關(guān)于點(diǎn)(﹣2,1)對(duì)稱,
∴f(﹣2+x)+f(﹣2﹣x)=2,
即f(x)+f(﹣4﹣x)=2,
∴f(﹣4﹣x)=2+f(4﹣x),
即f(x+8)=f(x)﹣2,
①f(﹣5)=f(3)+2=23+3×3+2=19,
②x∈(8k﹣2,8k+2),x﹣8k∈(﹣2,2),4﹣(x﹣8k)∈(2,6),
∴f(x)=f(x﹣8)﹣2=f(x﹣8×2)﹣2×2=f(x﹣8×3)﹣2×3=…=f(x﹣8k)﹣2k,
又由f(t)=﹣f(4﹣t),
∴f(x)=f(x﹣8k)﹣2k=﹣f[4﹣(x﹣8k)]﹣2k=﹣[24﹣(x﹣8k)+3(4﹣(x﹣8k))]﹣2k,
∴即當(dāng)x∈(8k﹣2,8k+2),k∈Z時(shí),f(x)=﹣24﹣x+8k+3x﹣26k﹣12.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】張明與張華兩人做游戲,下列游戲中不公平的是( )
①拋擲一枚骰子,向上的點(diǎn)數(shù)為奇數(shù)則張明獲勝,向上的點(diǎn)數(shù)為偶數(shù)則張華獲勝;
②同時(shí)拋擲兩枚硬幣,恰有一枚正面向上則張明獲勝,兩枚都正面向上則張華獲勝;
③從一副不含大小王的撲克牌中抽一張,撲克牌是紅色的則張明獲勝,撲克牌是黑色的則張華獲勝;
④張明、張華兩人各寫一個(gè)數(shù)字6或8,如果兩人寫的數(shù)字相同張明獲勝,否則張華獲勝.
A. ①② B. ② C. ②③④ D. ①②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩人玩猜數(shù)字游戲,先由甲心中任想一個(gè)數(shù)字記為,再由乙猜甲剛才想的數(shù)字,把乙猜的數(shù)字記為,且、.若,則稱甲乙“心有靈犀”.現(xiàn)任意找兩人玩這個(gè)游戲,則二人“心有靈犀”的概率為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】把參加某次鉛球投擲的同學(xué)的成績(jī)(單位:米)進(jìn)行整理,分成以下6個(gè)小組:[5.25,6.15),[6.15,7.05),[7.05,7.95),[7.95,8.85),[8.85,9.75),[9.75,10.65],并繪制出頻率分布直方圖,如圖所示是這個(gè)頻率分布直方圖的一部分.已知從左到右前5個(gè)小組的頻率分別為0.04,0.10,0.14,0.28,0.30,第6小組的頻數(shù)是7.規(guī)定:投擲成績(jī)不小于7.95米的為合格.
(1)求這次鉛球投擲成績(jī)合格的人數(shù);
(2)你認(rèn)為這次鉛球投擲的同學(xué)的成績(jī)的中位數(shù)在第幾組?請(qǐng)說明理由;
(3)若參加這次鉛球投擲的學(xué)生中,有5人的成績(jī)?yōu)閮?yōu)秀,現(xiàn)在要從成績(jī)優(yōu)秀的學(xué)生中,隨機(jī)選出2人參加相關(guān)部門組織的經(jīng)驗(yàn)交流會(huì),已知a、b 兩位同學(xué)的成績(jī)均為優(yōu)秀,求a、b 兩位同學(xué)中至少有1人被選到的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|ax﹣1|
(1)若f(x)≤2的解集為[﹣3,1],求實(shí)數(shù)a的值;
(2)若a=1,若存在x∈R,使得不等式f(2x+1)﹣f(x﹣1)≤3﹣2m成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校夏令營有3名男同學(xué)和3名女同學(xué),其年級(jí)情況如下表,現(xiàn)從這6名同學(xué)中隨機(jī)選出2人參加知識(shí)競(jìng)賽(每人被選到的可能性相同).
一年級(jí) | 二年級(jí) | 三年級(jí) | |
男同學(xué) | |||
女同學(xué) |
(1)用表中字母列舉出所有可能的結(jié)果;
(2)設(shè)為事件“選出的2人來自不同年級(jí)且恰有1名男同學(xué)和1名女同學(xué)”,求事件發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列滿足.
(1)求的通項(xiàng)公式;
(2)設(shè)等比數(shù)列滿足,問: 與數(shù)列的第幾項(xiàng)相等?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=|x﹣a|.
(1)當(dāng)a=2時(shí),解不等式f(x)≥7﹣|x﹣1|;
(2)若f(x)≤1的解集為[0,2], =a(m>0,n>0),求證:m+4n≥2 +3.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com