2.$\frac{sin70°sin20°}{{{{cos}^2}155°-{{sin}^2}155°}}$的值為( 。
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

分析 利用誘導(dǎo)公式、二倍角公式化簡(jiǎn)所給的式子,可得結(jié)果.

解答 解:$\frac{sin70°sin20°}{{{{cos}^2}155°-{{sin}^2}155°}}$=$\frac{sin20°cos20°}{cos310°}$=$\frac{sin40°}{2cos50°}$=$\frac{1}{2}$,
故選:B.

點(diǎn)評(píng) 本題主要考查誘導(dǎo)公式、二倍角公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.若拋物線(xiàn)y=x2-6x+5與坐標(biāo)軸的交點(diǎn)都在圓C上.
(1)求圓C的方程;
(2)若圓C與直線(xiàn)x-y+a=0交于A,B兩點(diǎn),且CA⊥CB,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.若P,S分別變?yōu)椋簆:(x-m)2>3(x-m),s:x2+3x-4<0,若x∈p是x∈s的必要不充分條件,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知函數(shù)f(x)是R上的偶函數(shù),若對(duì)于x≥0,都有f(x+2)=f(x),且當(dāng)x∈[0,2)時(shí),f(x)=log2(x+1),則f(-2015)+f(2016)的值為( 。
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=-$\frac{a}{2}$x2+(a-1)x+lnx.
(Ⅰ)若a>-1,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若g(x)=$\frac{a}{2}$x2+(1-2a)x+f(x)有且只有兩個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.在△ABC中,$\overrightarrow{AB}$•$\overrightarrow{AC}$=10,$\overrightarrow{BA}$•$\overrightarrow{BC}$=6,則|${\overrightarrow{AB}}$|=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.同時(shí)拋兩枚硬幣,事件“至少有一個(gè)正面向上”的概率是$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知△ABC的周長(zhǎng)為c,它的內(nèi)切圓半徑為r,則△ABC的面積為$\frac{1}{2}$cr.運(yùn)用類(lèi)比推理可知,若三棱椎D-ABC的表面積為6$\sqrt{3}$,內(nèi)切球的半徑為$\frac{1}{2}$,則三棱錐D-ABC的體積為( 。
A.$\frac{3}{2}$B.$\sqrt{3}$C.3D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.甲袋中有5個(gè)紅球,2個(gè)白球和3個(gè)黑球,乙袋中有4個(gè)紅球,3個(gè)白球和3個(gè)黑球.先從甲袋中隨機(jī)取出一球放入乙袋,分別以A1,A2和A3表示由甲袋取出的球是紅球,白球和黑球的事件;再?gòu)囊掖须S機(jī)取出一球,以B表示由乙袋取出的球是紅球的事件.則下列結(jié)論①P(B)=$\frac{9}{22}$;②P(B|A1)=$\frac{2}{5}$;③事件B與事件A1相互獨(dú)立;④A1,A2,A3是兩兩互斥的事件.
其中正確的是①④(寫(xiě)出所有正確結(jié)論的編號(hào)).

查看答案和解析>>

同步練習(xí)冊(cè)答案