分析 (Ⅰ)設出公差與公比,利用已知條件求出公差與公比,然后求解{an}和{bn}的通項公式;
(Ⅱ)化簡數(shù)列的通項公式,利用錯位相減法求解數(shù)列的和即可.
解答 解:(I)設等差數(shù)列{an}的公差為d,等比數(shù)列{bn}的公比為q.
由已知b2+b3=12,得b1(q+q2)=12,而b1=2,所以q+q2-6=0.
又因為q>0,解得q=2.所以,bn=2n.
由b3=a4-2a1,可得3d-a1=8①.
由S11=11b4,可得a1+5d=16②,
聯(lián)立①②,解得a1=1,d=3,由此可得an=3n-2.
所以,數(shù)列{an}的通項公式為an=3n-2,數(shù)列{bn}的通項公式為bn=2n.
(II)設數(shù)列{a2nb2n-1}的前n項和為Tn,
由a2n=6n-2,b2n-1=$\frac{1}{2}×$4n,有a2nb2n-1=(3n-1)4n,
故Tn=2×4+5×42+8×43+…+(3n-1)4n,
4Tn=2×42+5×43+8×44+…+(3n-1)4n+1,
上述兩式相減,得-3Tn=2×4+3×42+3×43+…+3×4n-(3n-1)4n+1
=$\frac{12×(1-{4}^{n})}{1-4}-4-(3n-1){4}^{n+1}$=-(3n-2)4n+1-8
得Tn=$\frac{3n-2}{3}×{4}^{n+1}+\frac{8}{3}$.
所以,數(shù)列{a2nb2n-1}的前n項和為$\frac{3n-2}{3}×{4}^{n+1}+\frac{8}{3}$.
點評 本題考查等差數(shù)列以及等比數(shù)列的應用,數(shù)列求和的方法,考查計算能力.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | a=2b | B. | b=2a | C. | A=2B | D. | B=2A |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | a<b<c | B. | c<b<a | C. | b<a<c | D. | b<c<a |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{4}{5}$ | B. | $\frac{3}{5}$ | C. | $\frac{2}{5}$ | D. | $\frac{1}{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
連續(xù)劇播放時長(分鐘) | 廣告播放時長(分鐘) | 收視人次(萬) | |
甲 | 70 | 5 | 60 |
乙 | 60 | 5 | 25 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com