【題目】設(shè)△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,滿足2asinA=(2b﹣ c)sinB+(2c﹣ b)sinC. (Ⅰ)求角A的大;
(Ⅱ)若a=2,b=2 ,求△ABC的面積.

【答案】解:(Ⅰ)由已知及正弦定理可得 , 整理得 ,
所以
又A∈(0,π),故
(Ⅱ)由正弦定理可知 ,又a=2, ,
所以
,故
,則 ,于是
,則 ,于是
【解析】(Ⅰ)△ABC中,由正弦定理得 ,再由余弦定理求得cosA= ,A= ;(Ⅱ)△ABC中,由正弦定理得到 ,進(jìn)而得到角B,再由內(nèi)角和為π得到角C,由三角形面積公式即得結(jié)論.
【考點(diǎn)精析】本題主要考查了正弦定理的定義和余弦定理的定義的相關(guān)知識點(diǎn),需要掌握正弦定理:;余弦定理:;;才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y2=﹣x與直線y=k(x+1)相交于A(x1 , y1),B(x2 , y2)兩點(diǎn),O為坐標(biāo)原點(diǎn).
(1)求y1y2的值;
(2)求證:OA⊥OB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知以點(diǎn) 為圓心的圓與直線 相切,過點(diǎn) 的動直線與圓 相交于 兩點(diǎn).
(1)求圓 的方程;
(2)當(dāng) 時,求直線 的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩矩形ABCD與ADEF所在的平面互相垂直,AB=1,若將△DEF沿直線FD翻折,使得點(diǎn)E落在邊BC上(即點(diǎn)P),則當(dāng)AD取最小值時,邊AF的長是;此時四面體F﹣ADP的外接球的半徑是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,若輸入n=10,則輸出的S=(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)= 恰有2個零點(diǎn),則實(shí)數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x﹣alnx(a∈R)
(1)當(dāng)a=2時,求曲線y=f(x)在點(diǎn)A(1,f(1))處的切線方程;
(2)求函數(shù)f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)m,n∈R,若直線(m+1)x+(n+1)y﹣2=0與圓(x﹣1)2+(y﹣1)2=1相切,則m+n的取值范圍是(
A.[1﹣ ,1+ ]
B.(﹣∞,1﹣ ]∪[1+ ,+∞)
C.[2﹣2 ,2+2 ]
D.(﹣∞,2﹣2 ]∪[2+2 ,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓E: 的右焦點(diǎn)為F(3,0),過點(diǎn)F的直線交橢圓E于A、B兩點(diǎn).若AB的中點(diǎn)坐標(biāo)為(1,﹣1),則E的方程為(
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案