某程序框圖如圖所示,則該程序框圖運行后輸出的結(jié)果是
考點:程序框圖
專題:算法和程序框圖
分析:由已知中的程序語句可知:該程序的功能是利用循環(huán)結(jié)構(gòu)計算并輸出變量S的值,模擬程序的運行過程,分析循環(huán)中各變量值的變化情況,可得答案.
解答: 解:當x=4時,滿足進行循環(huán)的條件,執(zhí)行循環(huán)體后,y=4,x=3;
當x=3時,滿足進行循環(huán)的條件,執(zhí)行循環(huán)體后,y=
3
4
,x=2;
當x=2時,滿足進行循環(huán)的條件,執(zhí)行循環(huán)體后,y=
8
3
,x=1;
當x=1時,不滿足進行循環(huán)的條件,
故輸出的結(jié)果為:
8
3

故答案為:
8
3
點評:本題考查了程序框圖的應用問題,解題時應模擬程序框圖的運行過程,以便得出正確的結(jié)論,是基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知AB是圓O的直徑,C,D是圓上不同兩點,且CD∩AB=H,AC=AD,PA⊥圓O所在平面.
(Ⅰ)求證:PB⊥CD;
(Ⅱ)若PB與圓O所在平面所成角為
π
4
,且∠CAD=
3
,求二面角C-PB-D的大小的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知sin(π-α)=2cos(2π-α),則
sin(π+α)+5cos(-α)
3cos(π-α)-cos(
π
2
+α)
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)若函數(shù)f(x)=|2x+a|的單調(diào)遞增區(qū)間是[3,+∞),則實數(shù)a=
 
;
(2)若函數(shù)f(x)=|2x+a|在區(qū)間[3,+∞)上單調(diào)遞增,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=3x,則f-1
1
9
)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

直線4x-3y+2=0與直線8x-6y-1=0的距離為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(1,x),
b
=(x2,2),且
a
b
,則實數(shù)x的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(文)已知函數(shù)f(x)=x3-(2a+2)x2+bx+c,設曲線y=f(x)在與x軸交點處的切線為y=x-1,f′(x)為f(x)的導函數(shù),函數(shù)h(x)=f(x)-x+2a+1.
(1)若函數(shù)f(x)滿足f'(4-x)=f'(x),求實數(shù)a,b,c的值;
(2)若函數(shù)h(x)在區(qū)間(-1,1)單調(diào)遞減,求實數(shù)a的取值范圍;
(3)當a<
1
2
時,函數(shù)h(x)在區(qū)間(a-1,3-a2)上有最小值,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=-x2+2 (a-1)x+2在區(qū)間(-∞,4)上遞增,則a的取值范圍是( 。
A、[-3,+∞)
B、(-∞,-3]
C、(-∞,5]
D、[5,+∞)

查看答案和解析>>

同步練習冊答案