【題目】如圖,在四棱錐P—ABCD中,PA⊥平面ABCD,∠ABC=∠BAD=90°,AD=AP=4,AB=BC=2,N為AD的中點.
(1)求異面直線PB與CD所成角的余弦值;
(2)點M在線段PC上且滿足,直線MN與平面PBC所成角的正弦值為,求實數(shù)的值.
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)定點,常數(shù),動點,設(shè),,且.
(1)求動點的軌跡方程;
(2)設(shè)直線:與點的軌跡交于,兩點,問是否存在實數(shù)使得?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某小區(qū)為了提高小區(qū)內(nèi)人員的讀書興趣,特舉辦讀書活動,準備進一定量的書籍豐富小區(qū)圖書站,由于不同年齡段需要看不同類型的書籍,為了合理配備資源,現(xiàn)對小區(qū)看書人員進行年齡調(diào)查,隨機抽取了一天40名讀書者進行調(diào)查. 將他們的年齡分成6段:
,
后得到如圖所示的頻率分布直方圖,問:
(1)在40名讀書者中年齡分布在的人數(shù);
(2)估計40名讀書者年齡的平均數(shù)和中位數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一元線性同余方程組問題最早可見于中國南北朝時期(公元世紀)的數(shù)學著作《孫子算經(jīng)》卷下第二十六題,叫做“物不知數(shù)”問題,原文如下:有物不知數(shù),三三數(shù)之剩二,五五數(shù)之剩三,問物幾何?即,一個整數(shù)除以三余二,除以五余三,求這個整數(shù).設(shè)這個整數(shù)為,當時,符合條件的共有( )
A. 個B. 個C. 個D. 個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù) ,,已知有三個互不相等的零點,且.
(Ⅰ)若.(ⅰ)討論的單調(diào)區(qū)間;(ⅱ)對任意的,都有成立,求的取值范圍;
(Ⅱ)若且,設(shè)函數(shù)在,處的切線分別為直線,,是直線,的交點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】根據(jù)統(tǒng)計調(diào)查數(shù)據(jù)顯示:某企業(yè)某種產(chǎn)品的質(zhì)量指標值服從正態(tài)分布,從該企業(yè)生產(chǎn)的這種產(chǎn)品(數(shù)量很大)中抽取100件,測量這100件產(chǎn)品的質(zhì)量指標值,由測量結(jié)果得到如圖所示的頻率分布直方圖,質(zhì)量指標值落在區(qū)間,,內(nèi)的頻率之比為.
(1)求這100件產(chǎn)品質(zhì)量指標值落在區(qū)間內(nèi)的頻率;
(2)根據(jù)頻率分布直方圖求平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(3)若取這100件產(chǎn)品指標的平均值,從這種產(chǎn)品(數(shù)量很大)中任取3個,求至少有1個落在區(qū)間的概率.
參考數(shù)據(jù):,若,則;;.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com