【題目】《算法統(tǒng)宗》是中國古代數(shù)學名著,由明代數(shù)學家程大位編著,它對我國民間普及珠算和數(shù)學知識起到了很大的作用,是東方古代數(shù)學的名著.在這部著作中,許多數(shù)學問題都是以歌訣形式呈現(xiàn)的,九兒問甲歌就是其中一首:一個公公九個兒,若問生年總不知,自長排來差三歲,共年二百又零七,借問長兒多少歲,各兒歲數(shù)要詳推.在這個問題中,這位公公年齡最小的兒子的年齡為(

A.8B.9C.11D.12

【答案】C

【解析】

根據(jù)題意,九個兒子的年齡構(gòu)成一個以公差為3的等差數(shù)列,再由求解.

從小到大,設(shè)公公的第 個兒子的年齡為

根據(jù)題意得,是等差數(shù)列,首項為,公差為,

又因數(shù)公公九個兒,共年二百又零七,

所以,

所以,

故公公的最小的兒子的年齡為11.

故選:C

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】針對時下的“抖音熱”,某校團委對“學生性別和喜歡抖音是否有關(guān)”作了一次調(diào)查,其中被調(diào)查的女生人數(shù)是男生人數(shù)的,男生喜歡抖音的人數(shù)占男生人數(shù)的,女生喜歡抖音的人數(shù)占女生人數(shù)若有95%的把握認為是否喜歡抖音和性別有關(guān),則男生至少有( )人.

K2k0

0.050

0.010

k0

3.841

6.635

A. 12B. 6C. 10D. 18

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】ABC中,已知點A5,-2,B7,3,且邊AC的中點M在y軸上,邊BC的中點N在x軸上,求:

(1)頂點C的坐標;

(2)直線MN的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=(x∈R),a為正實數(shù).

(1)求函數(shù)f(x)的單調(diào)區(qū)間;

(2)若對,不等式恒成立,求正實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在矩形中,,.將矩形沿對角線翻折形成四面體,若該四面體內(nèi)接于球,則下列說法錯誤的是(

A.四面體的體積的最大值是B.球心為線段的中點

C.的表面積隨二面角的變化而變化D.的表面積為定值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】首屆世界低碳經(jīng)濟大會在南昌召開,本屆大會以“節(jié)能減排,綠色生態(tài)”為主題,某單位在國家科研部門的支持下,進行技術(shù)攻關(guān),采用了新工藝,把二氧化碳轉(zhuǎn)化為一種可利用的化工產(chǎn)品.已知該單位每月的處理量最少為400噸,最多為600噸,月處理成本()與月處理量()之間的函數(shù)關(guān)系可近似地表示為,且每處理一噸二氧化碳得到可利用的化工產(chǎn)品價值為100元.

1)該單位每月處理量為多少噸時,才能使每噸的平均處理成本最低?

2)該單位每月能否獲利?如果獲利,求出最大利潤;如果不獲利,則需要國家至少補貼多少元才能使該單位不虧損?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,矩形和梯形所在的平面互相垂直,,.

(1)若的中點,求證:平面

(2)若,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點P不在直線l、m上,則“過點P可以作無數(shù)個平面,使得直線l、m都與這些平面平行”是“直線l、m互相平行”的(

A.充分不必要條件B.必要不充分條件

C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若直線與曲線滿足以下兩個條件:點在曲線上,直線方程為;曲線在點附近位于直線的兩側(cè),則稱直線在點切過曲線.下列選項正確的是(

A.直線在點切過曲線

B.直線在點切過曲線

C.直線在點切過曲線

D.直線在點切過曲線

查看答案和解析>>

同步練習冊答案