5.已知函數(shù)f(x)=$\frac{\sqrt{3-mx}}{m-2}$(m≠2)在區(qū)間(0,1)上是減函數(shù),則實(shí)數(shù)m的取值范圍是(  )
A.(0,2)B.(2,3)C.(-∞,0)∪(2,3)D.(-∞,0)∪(0,2)

分析 函數(shù)的解析式若有意義,則被開方數(shù)3-mx≥0,進(jìn)而根據(jù)x∈(0,1)恒有意義,分類討論函數(shù)的單調(diào)性,最后綜合討論結(jié)果,可得實(shí)數(shù)m的取值范圍.

解答 解:若使函數(shù)的解析式有意義須滿足3-mx≥0
當(dāng)x∈(0,1)時(shí),須:3-m×0>0,且3-m>0
得:m<3;
1<m≤2時(shí),y=3-mx為減函數(shù),m-2<0,故f(x)為增函數(shù),不符合條;
2<a<3時(shí),y=3-mx為減函數(shù),m-2>0,故f(x)為減函數(shù),符合條件;
故答案為:(2,3).

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是函數(shù)的單調(diào)性,熟練掌握函數(shù)定義域及函數(shù)單調(diào)性的性質(zhì)是解答的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.點(diǎn)M(1,1)到拋物線y=ax2準(zhǔn)線的距離為3,則a的值為( 。
A.$\frac{1}{8}$B.8C.$\frac{1}{8}或-\frac{1}{16}$D.$\frac{1}{8}$或-16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.定義集合運(yùn)算“*”:A×B={(x,y)|x∈A,y∈B},稱為A,B兩個(gè)集合的“卡氏積”.若A={x|x2-2|x|≤0,x∈N},b={1,2,3},則(a×b)∩(b×a)={(1,1),(1,2),(2,1),(2,2)}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.定義實(shí)數(shù)運(yùn)算x*y=$\left\{\begin{array}{l}{x,2x-1≥3y}\\{y,2x-1<3y}\end{array}\right.$,則|m-1|*m=|m-1|,則實(shí)數(shù)m的取值范圍是(-∞,$\frac{1}{5}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.某地區(qū)上年度電價(jià)為0.8元/kW•h,年用電量為akW•h,本年度計(jì)劃將電價(jià)降到0.55 元/kW•h至0.75元/kW•h之間,而用戶期待電價(jià)為0.4元/kW•h,下調(diào)電價(jià)后新增加的用電量與實(shí)際電價(jià)和用戶期望電價(jià)的差成反比(比例系數(shù)為K),該地區(qū)的電力成本為0.3元/kW•h.(注:收益=實(shí)際用電量×(實(shí)際電價(jià)-成本價(jià))),示例:若實(shí)際電價(jià)為0.6元/kW•h,則下調(diào)電價(jià)后新增加的用電量為$\frac{K}{0.6-0.4}$元/kW•h)
(1)寫出本年度電價(jià)下調(diào)后,電力部門的收益y與實(shí)際電價(jià)x的函數(shù)關(guān)系;
(2)設(shè)K=0.2a,當(dāng)電價(jià)最低為多少仍可保證電力部門的收益比上一年至少增長(zhǎng)20%?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.Sn為數(shù)列{an}的前n項(xiàng)和,已知${a_n}>0,4{S_n}=({{a_n}+3})({{a_n}-1}),({n∈{N^*}})$.則{an}的通項(xiàng)公式an=2n+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.若函數(shù)f(x)滿足f(-x)=f(x),且x>0時(shí),f(x)=3x,則x<0時(shí),f(x)等于( 。
A.3-xB.3xC.-3-xD.-3x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.函數(shù)f(x)=x2-2x+a有兩個(gè)不同的零點(diǎn),則實(shí)數(shù)a的范圍是(-∞,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知f(x)是R上的奇函數(shù),f(1)=1,且對(duì)任意x∈R都有f(x+4)=f(x)+f(2)成立,則f(2016)+f(2017)=1.

查看答案和解析>>

同步練習(xí)冊(cè)答案