17.若函數(shù)f(x)滿足f(-x)=f(x),且x>0時,f(x)=3x,則x<0時,f(x)等于( 。
A.3-xB.3xC.-3-xD.-3x

分析 由題意:函數(shù)f(x)滿足f(-x)=f(x),可得函數(shù)f(x)是偶函數(shù),x>0時,f(x)=3x,可求x<0時的解析式.

解答 解:由題意:函數(shù)f(x)滿足f(-x)=f(x),
∴函數(shù)f(x)是偶函數(shù);
當(dāng)x>0時,f(x)=3x,
那么:x<0時,則-x>0,可得f(-x)=3-x
∵f(-x)=f(x),
∴f(-x)=3-x=f(x);
故得x<0時,f(x)=3-x;
故選:A.

點評 本題考查了分段函數(shù)的解析式的求法,利用了函數(shù)的奇偶性.屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)定義在R上的函數(shù)f(x)對于任意x,y都有f(x+y)=f(x)+f(y)成立,且f(1)=-2,當(dāng)x>0時,f(x)<0.
(1)判斷f(x)的奇偶性,并加以證明;
(2)解關(guān)于x的不等式f(x+#)+f(2x-x2)>2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知函數(shù)f(x)的定義域是[1,5],則f(2x-1)的定義域是[1,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知3x=2,log3$\frac{9}{4}$=y,則2x+y的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.復(fù)數(shù)z=$\frac{4}{-1-i}$(i是虛數(shù)單位),在復(fù)平面對應(yīng)的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.橢圓$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1上一點P到焦點距離的最大值為(  )
A.4B.2C.2$\sqrt{3}$D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的一個焦點與拋物線y2=8x的焦點重合,點$P(2,\sqrt{2})$在C上.
(1)求橢圓C的方程;
(2)若橢圓C的一條弦被M(2,1)點平分,求這條弦所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知集合M={x|x2-2x-3=0},N={x|-2<x≤4},M∩N=( 。
A.{x|-1<x≤3}B.{x|-1<x≤4}C.{-3,1}D.{-1,3}

查看答案和解析>>

同步練習(xí)冊答案