8.在一次高三數(shù)學(xué)模擬測(cè)驗(yàn)后,對(duì)本班“選考題”選答情況進(jìn)行統(tǒng)計(jì)結(jié)果如下:
選修4-1選修4-4選修4-5
男生(人)1064
女生(人)2614
(Ⅰ)從選答“選修4-1”、“選修4-4”和“選修4-5”的同學(xué)中,按分層抽樣的方法隨機(jī)抽取7人,則選答“選修4-1”、“選修4-4”和“選修4-5”的同學(xué)各抽取幾人?
(Ⅱ)在統(tǒng)計(jì)結(jié)果中,如果把“選修4-1”和“選修4-4”稱為“幾何類”,把“選修4-5”稱為“非幾何類”,能否有99%的把握認(rèn)為學(xué)生選答“幾何類”與性別有關(guān)?
附:.
P(k2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$.

分析 (Ⅰ)利用$\frac{x}{12}=\frac{y}{12}=\frac{z}{18}=\frac{7}{12+12+18}$,求出選答“選修4-1”、“選修4-4”和“選修4-5”的同學(xué)各抽取幾人;
(Ⅱ)根據(jù)所給的列聯(lián)表得到求觀測(cè)值所用的數(shù)據(jù),把數(shù)據(jù)代入觀測(cè)值公式中,做出觀測(cè)值,同所給的臨界值表進(jìn)行比較,得到結(jié)論.

解答 解:(Ⅰ)設(shè)“選修4-1”、“選修4-4”和“選修4-5”抽取的人數(shù)分別為x,y,z,
則$\frac{x}{12}=\frac{y}{12}=\frac{z}{18}=\frac{7}{12+12+18}$,得x=2,y=2,z=3,
所以“選修4-1”“選修4-4”和“選修4-5”分別抽取2名,2名,3名.…(6分)
(Ⅱ)由題意得2×2列聯(lián)表

幾何類非幾何類合計(jì)
男生(人)16420
女生(人)81422
合計(jì)(人)241842
${K^2}=\frac{{42{{({16×14-4×8})}^2}}}{24×18×22×20}≈8.145≥6.635$
所以根據(jù)此統(tǒng)計(jì)有99%的把握認(rèn)為學(xué)生選答“幾何類”與性別有關(guān).…(12分)

點(diǎn)評(píng) 本題考查分層抽樣,考查獨(dú)立性檢驗(yàn)的應(yīng)用,考查根據(jù)列聯(lián)表做出觀測(cè)值,根據(jù)所給的臨界值表進(jìn)行比較,本題是一個(gè)中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.如圖,A、B是單位圓上的動(dòng)點(diǎn),C是單位圓與x軸正半軸的交點(diǎn),且∠AOB=$\frac{π}{6}$,∠COA=θ,θ∈[$\frac{π}{6}$,$\frac{π}{2}$],△AOC的面積為S,則f(θ)=$\overrightarrow{OC}$•$\overrightarrow{OB}$+2S的最小值為( 。
A.$\frac{1}{2}$B.1C.$\frac{\sqrt{3}}{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知直線y=x+m和圓x2+y2=1交于A、B兩點(diǎn),且|AB|=$\sqrt{3}$,則實(shí)數(shù)m=(  )
A.±1B.±$\frac{\sqrt{3}}{2}$C.±$\frac{\sqrt{2}}{2}$D.±$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.拋物線C:x2=2py,直線l:y=2p,l與C交于A、B兩點(diǎn),則C在A、B處的兩條切線的夾角的正切值為( 。
A.$\frac{4}{3}$B.$\frac{3}{4}$C.$\frac{8}{3}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.己知三棱錐P-ABC,側(cè)棱PA垂直底面ABC,PA=4,底面是邊長(zhǎng)為3的正三角形,則三棱錐的外接球的表面積為( 。
A.14πB.28πC.12πD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.利用秦九韶算法求多項(xiàng)式f(x)=x5+2x4-3x2+7x-2的值時(shí),則當(dāng)x=2時(shí),f(x)的值為64.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.如圖,網(wǎng)格紙上正方形小格的邊長(zhǎng)為1cm,圖中粗線畫(huà)出的是某零件的三視圖,該零件由一個(gè)底面半徑為3cm,高為6cm的圓柱體毛坯切削得到,則切削掉部分的體積為( 。
A.20πcm3B.16πcm3C.12πcm3D.$\frac{20π}{3}c{m^3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.如圖ABCD-A1B1C1D1是邊長(zhǎng)為1的正方體,S-ABCD是高為l的正四棱錐,若點(diǎn)S,A1,B1,Cl,D1在同一個(gè)球面上,則該球的表面積為( 。
A.$\frac{9}{16}π$B.$\frac{25}{16}π$C.$\frac{49}{16}π$D.$\frac{81}{16}π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.正三棱錐P-ABC內(nèi)接于球O,球心O在底面ABC上,且AB=$\sqrt{3}$,則球的表面積為( 。
A.16πB.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案