3.化簡(jiǎn)復(fù)數(shù)$\frac{1+\sqrt{3}i}{1-i}$(其中i為虛數(shù)單位)的結(jié)果是( 。
A.$\frac{1-\sqrt{3}}{2}$+$\frac{1+\sqrt{3}}{2}$iB.$\frac{1-\sqrt{3}}{2}$-$\frac{1+\sqrt{3}}{2}$iC.$\frac{1+\sqrt{3}}{2}$+$\frac{1-\sqrt{3}}{2}$iD.$\frac{1+\sqrt{3}}{2}$-$\frac{1-\sqrt{3}}{2}$i

分析 根據(jù)復(fù)數(shù)的運(yùn)算法則計(jì)算即可.

解答 解:$\frac{1+\sqrt{3}i}{1-i}$=$\frac{(1+\sqrt{3}i)(1+i)}{(1-i)(1+i)}$=$\frac{1-\sqrt{3}+(1+\sqrt{3})i}{2}$=$\frac{1-\sqrt{3}}{2}$+$\frac{1+\sqrt{3}}{2}$i,
故選:A.

點(diǎn)評(píng) 本題主要考查復(fù)數(shù)的基本運(yùn)算,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在△ABC中,角A、B、C所對(duì)的邊分別是a、b、c,已知cos$\frac{C}{2}$=$\frac{\sqrt{6}}{3}$.
(I)求cosC的值;
(II)若acosB+bcosA=2,且S△ABC=9$\sqrt{2}$,求△ABC的周長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在梯形ABCD中,AB∥DC,AB⊥AD,AD=DC=1,AB=2,若$\overrightarrow{AP}$=$\frac{1}{6}\overrightarrow{AD}$$+\frac{5}{6}\overrightarrow{AB}$,則|$\overrightarrow{BC}$+t$\overrightarrow{PB}$|(t∈R)的取值范圍是( 。
A.[$\frac{\sqrt{5}}{5}$,+∞)B.[$\sqrt{2}$,+∞)C.[$\frac{\sqrt{5}}{5}$,1]D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左焦點(diǎn)為F,右頂點(diǎn)為A,虛軸的上端點(diǎn)為B,線段AB與漸近線交于點(diǎn)M,若FM平分∠BFA,則該雙曲線的離心率e=( 。
A.1+$\sqrt{3}$B.1+$\sqrt{2}$C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.過雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a,b>0)$的右焦點(diǎn)F作漸近線的垂線,垂足為P,過P作y軸的垂線交另一漸近線為Q,若△OFP的面積是△OPQ的面積的4倍,則雙曲線的離心率為( 。
A.$\frac{\sqrt{5}}{2}$B.$\sqrt{2}$C.2$\sqrt{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知b2-a2=ac.
(Ⅰ) 若$cosB=\frac{1}{4}$,a=1,求△ABC的面積;
(Ⅱ)若$A=\frac{π}{6}$,求B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知集合U={0,1,2,3,4},M={1,3},N={1,2,4},則為(∁uM)∩N( 。
A.{1,3,4}B.{0,2,4}C.{2,4}D.{3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如圖所示的程序框圖所表示的算法功能是( 。
A.輸出使1×2×4×…×n≥2015成立的最小整數(shù)n
B.輸出使1×2×4×…×n≥2015成立的最大整數(shù)n
C.輸出使1×2×4×…×n≥2015成立的最大整數(shù)n+2
D.輸出使1×2×4×…×n≥2015成立的最小整數(shù)n+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足$\overrightarrow{a}$•$\overrightarrow$=0,|$\overrightarrow{a}$|=2,|$\overrightarrow$|=3,則|3$\overrightarrow{a}$-2$\overrightarrow$|=( 。
A.0B.6$\sqrt{2}$C.36D.72

查看答案和解析>>

同步練習(xí)冊(cè)答案