13.已知向量$\overrightarrow{a}$,$\overrightarrow$滿(mǎn)足$\overrightarrow{a}$•$\overrightarrow$=0,|$\overrightarrow{a}$|=2,|$\overrightarrow$|=3,則|3$\overrightarrow{a}$-2$\overrightarrow$|=( 。
A.0B.6$\sqrt{2}$C.36D.72

分析 直接利用向量的模求法以及向量的數(shù)量積求解即可.

解答 解:向量$\overrightarrow{a}$,$\overrightarrow$滿(mǎn)足$\overrightarrow{a}$•$\overrightarrow$=0,|$\overrightarrow{a}$|=2,|$\overrightarrow$|=3,則|3$\overrightarrow{a}$-2$\overrightarrow$|=$\sqrt{9{\overrightarrow{a}}^{2}-12\overrightarrow{a}•\overrightarrow+4{\overrightarrow}^{2}}$=$\sqrt{36+36}$=$6\sqrt{2}$.
故選:B.

點(diǎn)評(píng) 本題考查平面向量的數(shù)量積以及向量的模的求法,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.化簡(jiǎn)復(fù)數(shù)$\frac{1+\sqrt{3}i}{1-i}$(其中i為虛數(shù)單位)的結(jié)果是(  )
A.$\frac{1-\sqrt{3}}{2}$+$\frac{1+\sqrt{3}}{2}$iB.$\frac{1-\sqrt{3}}{2}$-$\frac{1+\sqrt{3}}{2}$iC.$\frac{1+\sqrt{3}}{2}$+$\frac{1-\sqrt{3}}{2}$iD.$\frac{1+\sqrt{3}}{2}$-$\frac{1-\sqrt{3}}{2}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.如圖,B是AC的中點(diǎn),$\overrightarrow{BE}$=2$\overrightarrow{OB}$,P是矩形BCDE內(nèi)(含邊界)的一點(diǎn),且$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$(x,y∈R).則x-y的最大值為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.若復(fù)數(shù)z滿(mǎn)足1+z=i,則|z|=(  )
A.$\sqrt{2}$B.1C.$\frac{\sqrt{2}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知雙曲線C的方程$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1,其左、右焦點(diǎn)分別是F1,F(xiàn)2,已知點(diǎn)M坐標(biāo)為(2,1).雙曲線C上點(diǎn)P(x0,y0)(x0>0,y0>0)滿(mǎn)足$\overrightarrow{OM}$=$\overrightarrow{OP}$+λ($\frac{\overrightarrow{P{F}_{1}}}{|\overrightarrow{P{F}_{1}}|}$+$\frac{\overrightarrow{P{F}_{2}}}{|P{F}_{2}|}$),則S${\;}_{△PM{F}_{1}}$-S${\;}_{△PM{F}_{2}}$=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.4個(gè)人排成一排照相,不同排列方式的種數(shù)為24(結(jié)果用數(shù)值表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.設(shè)函數(shù)f(x)=ax-2-lnx(a∈R).
(1)若f(x)在點(diǎn)(e,f(e))處的切線斜率為$\frac{1}{e}$,求a的值;
(2)當(dāng)a>0時(shí),求f(x)的單調(diào)區(qū)間;
(3)若g(x)=ax-ex,求證:在x>0時(shí),f(x)>g(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=$\frac{x}{1+x}$-aln(1+x)(a∈R),g(x)=x2emx(m∈R).
(1)當(dāng)a=1,求函數(shù)f(x)的最大值
(2)當(dāng)a<0,且對(duì)任意實(shí)數(shù)x1,x2∈[0,2],f(x1)+1≥g(x2)恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.一段繁忙的公路有大量汽車(chē)通過(guò),設(shè)每一輛汽車(chē)在一天的某段時(shí)間內(nèi)出事故的概率為0.00001,若每天在該段時(shí)間內(nèi)有1000輛汽車(chē)通過(guò),則出事故的車(chē)輛數(shù)不少于2的概率是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案