以下莖葉圖記錄了甲、乙兩組各三名同學在期末考試中的數(shù)學成績.乙組記錄中有一個數(shù)字模糊,無法確認,假設這個數(shù)字具有隨機性,并在圖中以表示.
 
(Ⅰ)若甲、乙兩個小組的數(shù)學平均成績相同,求的值;
(Ⅱ)求乙組平均成績超過甲組平均成績的概率;
(Ⅲ)當時,分別從甲、乙兩組中各隨機選取一名同學,記這兩名同學數(shù)學成績之差的絕對值為,求隨機變量的分布列和數(shù)學期望.

(Ⅰ);(Ⅱ);(Ⅲ)分布列詳見解析,期望.

解析試題分析:(Ⅰ)根據(jù)甲乙平均成績相等列等式,得,可求的值為1;(Ⅱ)因為的取值具有隨機性,故,有10種可能,而乙組平均成績超過甲組平均成績,共有8種可能,故所求事件的概率為;(Ⅲ)從甲、乙兩組同學中各隨機選取一名同學,所有可能的成績結果有種,分別計算每組兩名同學數(shù)學成績之差的絕對值,以確定的取值,并分別求取相應值的概率,寫出分布列并求期望.
試題解析:(Ⅰ)解:依題意,得 ,解得 .
(Ⅱ)解:設“乙組平均成績超過甲組平均成績”為事件,依題意 ,共有10種可能.
由(Ⅰ)可知,當時甲、乙兩個小組的數(shù)學平均成績相同,所以當時,乙組平均成績超過甲組平均成績,共有8種可能.所以乙組平均成績超過甲組平均成績的概率
(Ⅲ)解:當時,分別從甲、乙兩組同學中各隨機選取一名同學,所有可能的成績結果有種, 它們是:,,,,
則這兩名同學成績之差的絕對值的所有取值為.
因此,,,.
所以隨機變量的分布列為:


0
1
2
3
4






所以的數(shù)學期望
考點:1、平均數(shù);2、古典概型;3、離散型隨機變量的分布列和期望.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

某高校在202年自主招生考試成績中隨機抽取100名學生的筆試成績,按成績分組:第1組[75,80),第2組[80,85), 第3組[85,90),第4組[90,95),第5組[95,100]得到的頻率分布直方圖如圖所示.

(1)分別求第3,4,5組的頻率;
(2)若該校決定在筆試成績高的第3,4,5組中用分層抽樣抽取6名學生進入第二輪面試,
(ⅰ)已知學生甲和學生乙的成績均在第三組,求學生甲和學生乙同時進入第二輪面試的概率;
(ⅱ)學校決定在這6名學生中隨機抽取2名學生接受考官D的面試,設第4組中有名學生被考官D面試,求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知二次函數(shù)),若是從區(qū)間中隨機抽取的一個數(shù),是從區(qū)間中隨機抽取的一個數(shù),求方程沒有實數(shù)根的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

一汽車廠生產(chǎn)A,B,C三類轎車,每類轎車均有舒適型和標準型兩種型號,某月的產(chǎn)量如表所示(單位輛),若按A,B,C三類用分層抽樣的方法在這個月生產(chǎn)的轎車中抽取50輛,則A類轎車有10輛

 
轎車A
轎車B
轎車C
舒適型
100
150
z
標準型
300
450
600
 
(1)求下表中z的值;
(2)用隨機抽樣的方法從B類舒適型轎車中抽取8輛,經(jīng)檢測它們的得分如下:94,86,92,96,87,93,90,82把這8輛轎車的得分看作一個總體,從中任取一個得分數(shù) 記這8輛轎車的得分的平均數(shù)為,定義事件{,且函數(shù)沒有零點},求事件發(fā)生的概率

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某商家推出一款簡單電子游戲,彈射一次可以將三個相同的小球隨機彈到一個正六邊形的頂點與中心共七個點中的三個位置上(如圖),用S表示這三個球為頂點的三角形的面積.規(guī)定:當三球共線時,S=0;當S最大時,中一等獎,當S最小時,中二等獎,其余情況不中獎,一次游戲只能彈射一次.

(1)求甲一次游戲中能中獎的概率;
(2)設這個正六邊形的面積是6,求一次游戲中隨機變量S的分布列及期望值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

一個盒子中裝有形狀大小相同的5張卡片,上面分別標有數(shù)字1,2,3,4,5,甲乙兩人分別從盒子中隨機不放回的各抽取一張.
(Ⅰ)寫出所有可能的結果,并求出甲乙所抽卡片上的數(shù)字之和為偶數(shù)的概率;
(Ⅱ)以盒子中剩下的三張卡片上的數(shù)字作為邊長來構造三角形,求出能構成三角形的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

一中食堂有一個面食窗口,假設學生買飯所需的時間互相獨立,且都是整數(shù)分鐘,對以往學生買飯所需的時間統(tǒng)計結果如下:

買飯時間(分)
1
2
3
4
5
頻率
0.1
0.4
0.3
0.1
0.1
從第一個學生開始買飯時計時.
(Ⅰ)求第2分鐘末沒有人買晚飯的概率;
(Ⅱ)估計第三個學生恰好等待4分鐘開始買飯的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

袋中有8個大小相同的小球,其中1個黑球,3個白球,4個紅球.
(I)若從袋中一次摸出2個小球,求恰為異色球的概率;
(II)若從袋中一次摸出3個小球,且3個球中,黑球與白球的個數(shù)都沒有超過紅球的個數(shù),記此時紅球的個數(shù)為,求的分布列及數(shù)學期望E.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

一個袋子裝有大小形狀完全相同的9個球,其中5個紅球編號分別為1,2,3,4,5,4個白球編號分別為1,2,3,4,從袋中任意取出3個球.
(1)求取出的3個球編號都不相同的概率;
(2)記X為取出的3個球中編號的最小值,求X的分布列與數(shù)學期望.

查看答案和解析>>

同步練習冊答案